Accelerate OpenStack*
Together

*OpenStack is a registered trademark of the OpenStack Foundation
Software Defined Infrastructure – A Gateway to Faster Innovation & Lower Costs

Adrian Hoban (Intel)

Alan Kavanagh (Ericsson)
Agenda

• Architectural Transformation
• Software Defined Infrastructure (SDI) Vision
• Overview of the ETSI-NFV reference architecture
• Challenges & Opportunities presented by SDI & NFV use cases
• Share thoughts on how you can get involved in this exciting new space.
Software Defined Infrastructure (SDI) Vision

SDI benefits the User / Infrastructure owner by enabling faster innovation and lower cost

Efficient SDI requires Application ⇔ Infrastructure interaction

Abstractions allow finer granularity in pooling Network, Storage and Compute elements

Orchestration optimally allocates resources matching App requirements to Infrastructure capabilities

Policy based provisioning
Dynamic Automation
App/SLA mapping to underlying Infrastructure
Architectural Transformation

Single Application on Dedicated Hardware

- Firewall
- BRAS
- Intrusion Detection System

TEM/OEM Proprietary OS
ASIC, DSP, FPGA, ASSP

SDN/NFV

- Firewall App
- BRAS App
- CPE App
- DPI App
- PDG App

SDN/NFV Infrastructure

- x86 CPU
- NIC Silicon
- Chipset Acceleration
- Switch Silicon
- Linux

OpenStack Summit, Paris, Nov. 3-7, 2014
European Telecommunications Standards Institute
Network Functions Virtualisation (NFV)

OSS: Operations Support Systems
BSS: Business Support Systems
VNF: Virtual Network Function
EMS: Element Management System
VIM: Virtualised Infrastructure Manager
NFVI: Network Functions Virtualisation Infrastructure

OpenStack™ ≈ VIM

Figure from ETSI-NFV GS NFV 002 v1.1.1
http://www.etsi.org/deliver/etsi_gs/nfv/001_099/002/01.01.01_60/gs_nfv002v010101p.pdf
SDI & NFV: A Powerful Force for Network Transformation

- SDI is a holistic view of the VIM, the network controller and the NVFI (Compute, Network and Storage Infrastructure)
- SDI underpins applications such as NFV.
Multiple Related SDI Open Source & Standards Development Activities

<table>
<thead>
<tr>
<th>Initiative</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>OpenStack Orchestration/Management</td>
<td>OpenDaylight Open Source Controller Consortium</td>
</tr>
<tr>
<td>Network Function Virtualisation</td>
<td>IETF Service Function Chaining</td>
</tr>
<tr>
<td>Open Networking Foundation</td>
<td>Open Platform for NFV (OPNFV) Organisation (under the Linux Foundation)</td>
</tr>
<tr>
<td>DPDK.org</td>
<td>Open vSwitch</td>
</tr>
</tbody>
</table>

Communities will need to collaborate openly to move the market forward

OpenStack Summit, Paris, Nov. 3-7, 2014

* Other names and brands may be claimed as the property of others
Open Source Reference Architecture for SDN/NFV

Common VIM and Control layers

OpenStack

Enhancements

Open Daylight

OVSDB

Open Flow

Other

Cloud/Data Centre

App

App

App

DPDK based vSwitches

Linux*/KVM

Intel® ONP Server

New use cases bring new requirements for collaborate with the community

Telco + ETSI/NFV mapping

OSS/BSS

Service Orcheduler

VNF Manager

EMS

Telco Data Centre

vRouter

vFW

vIPS

DPDK based vSwitches

Linux*/KVM

Intel® ONP Server

* Other names and brands may be claimed as the property of others
Challenges & Opportunities Ahead
SDI Reference Stack: Capabilities and Challenges

OpenStack*, OpenDaylight, Open vSwitch and the Intel® Architecture Server

Many existing / emerging mechanisms

- Network Virtualization
- Overlays
- L4-L7 vAppliances
- Service Function Chaining (SFC)

Additional network mechanisms

- Deployment of Network Appliances as Infrastructure Services
- Unified Scheduling for Network, Storage and Compute
- User/Application awareness
- SLA and Policy support

OpenStack

Network Policy/SLA Definition

Policy/SLA Definition

Open Daylight

Policy/SLA Enforcement

* Other names and brands may be claimed as the property of others
vSwitch Challenges... and Opportunities

Growing Demands
- Increased East/West traffic
- Higher core density enables more VM co-location & Inter-VM traffic
- Network Security, Isolation, SLA
- Monitoring, visibility

Many implementations
- Varying features, performance and API

Performance
- Low, controlled latency
- Sufficient throughput
- Low CPU utilization

Vanilla Open vSwitch small packet performance may fall behind NFV applications needs
Data Plane Development Kit (www.dpdk.org)

Optimized software libraries and drivers for accelerating packet processing

1: Intel internal estimate
2: Intel Internal measurement of packet processing performance using Intel Xeon processors. Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products. For more information go to intel.com/performance
DPDK Enabling Requires Enhance Platform Awareness

- NUMA Awareness
- CPU Pinning
- Huge Pages
- SR-IOV

Server

Processor
Socket 0

Processor
Socket 1

Application Process

Application Process

Application Process

Application Process

Optimising placement for platform resources enables greater performance & efficiency
DPDK Enabling Requires Enhance Platform Awareness

- NUMA Awareness
- CPU Pinning
- Huge Pages
- SR-IOV

Co-location helps with cache efficiency for faster inter-process data sharing & communication.
Data Plane Development Kit (DPDK) Based vSwitches

OpenStack needs to be able to configure high performance I/O paths to the VM
One cloud – all workloads – all industries

Cloud Transformation Partner

- Path to NFV
- OSS/BSS Modernization
- New cloud revenues

NFV Full Application Stacks

- Media & OSS/BSS Differentiation
- Cloud for Enterprise

Cloud Infrastructure Governance & Security

Cloud Infrastructure Automation

Software Defined Networking

End to End Infrastructure
[Storage + Compute + Network]

Data Center
AN NFV Transformation has started

Yesterday
- Optimized VNF configuration Build
 - APP
 - H/W
- Firewall
- BRAS

Today
- OpenStack
 - APP
 - Virtualization Layer
 - H/W

NFV | Openstack | ODL Transformation

- OSS/BSS
- PaaS
- Cloud IaaS Mgmt
 - Compute
 - Network
 - Storage
 - Virtualisation Layer
 - Physical Infrastructure
- Access Virtual Gateways
- Aggregation
- Transport SDN/NFV
- Virtual Edge Services
Provision & Configuration of VNF’s

VNF

APP
APP
APP

Network
Compute
Storage

PaaS
Policy/Security/Governance

Openstack NBI API’s

Neutron
Nova
Cinder
Glance
Swift

Service Catalog

VNF
OVF
NSD

Attributes for NFV config and expose via API

VNF Additional Requirements

VLAN Trunk
PCI Device Capability
Firmware validation
Local storage
QoS

Security
CPU Pinning
NUMA Topology
Network Anti-Affinity

* Other names and brands may be claimed as the property of others
Scheduling is

Information Exposed to make “Intelligent fine grain placement decisions”

- Onboard Storage
- PCI_Device_Type
- Network Based Anti-Affinity
- High Performance vSwitch
- Link_Type
- CPU Pinning
- NUMA Awareness
- Feature

...placing an application in the Cloud based on the constraints to handle my app to meet my SLA

Host 1
- Chipset Acceleration
- CPU IvyBridge
- PCI_Type X

Host 2
- SSD
- CPU Haswell
- PCI_Type E

Host - N
- Host Red Hat
- Atom
- PCI_Type Z

* Other names and brands may be claimed as the property of others
NFV Made Easy...

Policy Governance → PaaS → SLA

OpenStack API's

Scheduler

Host 1 → Host 2 (DPDK vSwitch SR-IOV) → Host 3 → Host -N

API Exposure

Cloud abstraction of requirements

Unified scheduling

Customer or Operator

OVF Package

* Other names and brands may be claimed as the property of others
OPNFV Certification program

OPNFV certification program will not be for certain vendors only, but for the industry.

OPNFV certification program will certify vendors for compliance to ETSI/NFV standards and OPNFV reference architecture, validate multi-vendor compliance, full-stack interoperability, and assess and benchmark performance.
to disrupt markets by accelerating the SPEED of business without losing control
Policy Governed Platform-As-A-Service
How you can get involved in this exciting new space?
Collaborate in Open Source and SDOs to enable the SDI vision by supporting/contributing to:

- APIs and Information Models extended to support use cases
- Automated configuration for enhanced Server and vSwitch performance
- Unified scheduler enhancements for optimal placement across Compute, Network & Storage domains
- Policy driven infrastructure with SLA enforcement at the server
Future OvS Directions...
Policy controlled SR-IOV + Open Daylight + OpenStack*

Optimize the Server Data Plane for Network and Storage workloads
Software and Hardware combination for optimized flexibility and performance

*Intel® DPDK
OpenStack Summit, Paris, Nov. 3-7, 2014

Legal Disclaimers

Copyright © 2014 Intel Corporation. All rights reserved
Intel, the Intel logo, Xeon, Atom, and QuickAssist are trademarks of Intel Corporation in the U.S. and/or other countries.
*Other names and brands may be claimed as the property of others.

All products, computer systems, dates and figures specified are preliminary based on current expectations, and are subject to change without notice.
Intel® Advanced Vector Extensions (Intel® AVX)* are designed to achieve higher throughput to certain integer and floating point operations. Due to varying processor power characteristics, utilizing AVX instructions may cause a) some parts to operate at less than the rated frequency and b) some parts with Intel® Turbo Boost Technology 2.0 to not achieve any or maximum turbo frequencies. Performance varies depending on hardware, software, and system configuration and you should consult your system manufacturer for more information.

*Intel® Advanced Vector Extensions refers to Intel® AVX, Intel® AVX2 or Intel® AVX-512. For more information on Intel® Turbo Boost Technology 2.0, visit http://www.intel.com/go/turbo

No computer system can provide absolute security. Requires an enabled Intel® processor, enabled chipset, firmware and/or software optimized to use the technologies. Consult your system manufacturer and/or software vendor for more information.

No computer system can provide absolute security. Requires an Intel® Identity Protection Technology-enabled system, including an enabled Intel® processor, enabled chipset, firmware, software, and Intel integrated graphics (in some cases) and participating website/service. Intel assumes no liability for lost or stolen data and/or systems or any resulting damages. For more information, visit http://ipt.intel.com/. Consult your system manufacturer and/or software vendor for more information.

No computer system can provide absolute security. Requires an enabled Intel® processor, enabled chipset, firmware, software and maybe require a subscription with a capable service provider (may not be available in all countries). Intel assumes no liability for lost or stolen data and/or systems or any other damages resulting thereof. Consult your system or service provider for availability and functionality.

No computer system can provide absolute reliability, availability or serviceability. Requires an Intel® Xeon® processor E7-8800/4800/2800 v2 product families or Intel® Itanium® 9500 series-based system (or follow-on generations of either). Built-in reliability features available on select Intel® processors may require additional software, hardware, services and/or an internet connection. Results may vary depending upon configuration. Consult your system manufacturer for more details.

For systems also featuring Resilient System Technologies: No computer system can provide absolute reliability, availability or serviceability. Requires an Intel® Run Sure Technology-enabled system, including an enabled Intel processor and enabled technology(ies). Built-in reliability features available on select Intel® processors may require additional software, hardware, services and/or an Internet connection. Results may vary depending upon configuration. Consult your system manufacturer for more details.

For systems also featuring Resilient Memory Technologies: No computer system can provide absolute reliability, availability or serviceability. Requires an Intel® Run Sure Technology-enabled system, including an enabled Intel® processor and enabled technology(ies). Built-in reliability features available on select Intel® processors may require additional software, hardware, services and/or an Internet connection. Results may vary depending upon configuration. Consult your system manufacturer for more details. The original equipment manufacturer must provide TPM functionality, which requires a TPM-supported BIOS. TPM functionality must be initialized and may not be available in all countries.

No computer system can provide absolute reliability, availability or serviceability. Requires an enabled Intel® processor, enabled chipset, BIOS, and virtual machine monitor (VMM). Functionality, performance or other benefits will vary depending on hardware and software configurations. Software applications may not be compatible with all operating systems. Consult your PC manufacturer.

For more information, visit http://www.intel.com/go/virtualization