

Document Number: 336210-014

Intel QuickAssist Technology Software

for Linux*
Programmer's Guide - Hardware Version 1.7

September 2020

Intel Confidential

Legal Lines and Disclaimers

Intel® QuickAssist Technology Software for Linux*

Programmer’s Guide – Hardware Version v1.7 September 2020

2 Intel Confidential Document Number: 336210-014

You may not use or facilitate the use of this document in connection with any infringement or other legal analysis concerning Intel products

described herein. You agree to grant Intel a non-exclusive, royalty-free license to any patent claim thereafter drafted, which includes subject

matter disclosed herein.

Intel technologies' features and benefits depend on system configuration and may require enabled hardware, software, or service activation.

Performance varies depending on system configuration. No product or component can be absolutely secure. Check with your system

manufacturer or retailer or learn more at [intel.com].

No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this document.

Tests document the performance of components on a particular test, in specific systems. Differences in hardware, software, or configuration will

affect actual performance. Consult other sources of information to evaluate performance as you consider your purchase. For more complete

information about performance and benchmark results, visit www.intel.com/performance.

Intel does not control or audit third-party data. You should review this content, consult other sources, and confirm whether referenced data are

accurate.

Copies of documents which have an order number and are referenced in this document may be obtained by calling 1-800-548-4725 or by

visiting www.intel.com/design/literature.htm.

Intel and the Intel logo are trademarks of Intel Corporation in the United States and other countries.

*Other names and brands may be claimed as the property of others.

Copyright © 2020, Intel Corporation. All rights reserved.

http://www.intel.com/
file:///C:/Users/hopkinrx/Documents/Document%20Assignments/CID%20Group/www.intel.com/performance

Intel® QuickAssist Technology Software for Linux*

September 2020 Programmer’s Guide – Hardware Version v1.7

Document Number: 336210-014 Intel Confidential 3

Contents

1.0 Introduction ... 10

1.1 Terminology .. 10
1.2 Typographical Conventions ... 12

2.0 Software Overview.. 13

2.1 Intel® Communications Chipset 8925 to 8955 Series Compatibility 13

2.2 Logical Instances .. 13
2.2.1 Response Processing ... 13

2.2.1.1 Interrupt Mode ... 13
2.2.1.2 Epolled Mode ... 15
2.2.1.3 epoll_create() / epoll_ctl() / epoll_wait() ... 16

3.0 Acceleration Drivers Overview ... 18

3.1 Hardware/Software Overview ... 18

3.2 Acceleration Driver Configuration File .. 20

3.3 3.3 Utility for Loading Configuration Files and Sending Events to the Driver - adf_ctl ... 20

3.3.1 Usage... 20
3.4 Application Payload Memory Allocation .. 20

3.5 User Space Additional Functions .. 21

3.6 Managing Intel® QuickAssist Technology Endpoints Using qat_service 22

3.7 Intel® QAT Entries in the /sys/kernel/ debug Filesystem .. 23

3.8 Compression Status Codes .. 23

3.8.1 Intel® QuickAssist Technology Compression API Errors ... 23
3.9 Stateful Compression Unsupported .. 27

3.10 Stateless Compression Level Details ... 27

3.11 Acceleration Driver Return Codes ... 27

3.12 Batch and Pack Compression Unsupported .. 29

3.13 Compress and Verify Feature .. 29

3.14 Running Applications as Non-Root User .. 30

3.15 Random Number Generation .. 31
3.16 Huge Pages with the Included Memory Driver .. 31

3.17 Heartbeat ... 32

3.17.1 Heartbeat Operation .. 32
3.17.1.1 Initialization ... 32
3.17.1.2 Heartbeat monitoring ... 32
3.17.1.3 Resetting a failed device .. 33

3.17.2 Incorporating Heartbeat into Intel® QAT Applications .. 33
3.17.2.1 ð CPA_INSTANCE_EVENT_RESTARTING (device is restarting) 34

3.17.3 Testing Heartbeat .. 36
3.17.3.1 Simulated Heartbeat Failure Configuration .. 36
3.17.3.2 Simulating Heartbeat Failure ... 36
3.17.3.3 # cat /sys/kernel/debug/<device>/heartbeat_sim_fail 36

Intel® QuickAssist Technology Software for Linux*

Programmer’s Guide – Hardware Version v1.7 September 2020

4 Intel Confidential Document Number: 336210-014

3.18 Handling Device Failures in a Virtualized Environment .. 37

3.19 Incorporating Dummy Responses into an Intel® QAT Application .. 38
3.20 Rate Limiting ... 39

3.20.1 3.20.1 Service Level Agreement (SLA) .. 40
3.20.2 3.20.2 SLA Units ... 40
3.20.3 3.20.3 SLA Manager Application ... 40

3.20.3.1 Commands to Fetch Device Utilization ... 40
3.21 DU Manager Application ... 41

3.21.1 Commands to Fetch Device Utilization .. 42
3.21.2 Durations ... 42
3.21.3 Reference Algorithm .. 42

4.0 Acceleration Driver Configuration File ... 43

4.1 Configuration File Overview .. 43

4.2 General Section ... 44

4.2.1 General Parameters .. 44

4.3 Logical Instances Section .. 46

4.3.1 [KERNEL] Section ... 46
4.3.2 [KERNEL_QAT] Section ... 47
4.3.3 User Process [xxxxx] Sections .. 48

4.3.3.1 Maximum Number of Process Calculations .. 49
4.3.3.2 Increasing the Maximum Number of Processes/Instances 50
4.3.3.3 Configuring Instances for Virtual Functions ... 51

4.3.4 Cryptographic Logical Instance Parameters .. 52
4.3.5 Data Compression Logical Instance Parameters ... 53
4.3.6 Setting the Core Affinity Parameter for a Logical Instance 53

4.4 Configuring Multiple Intel® QuickAssist Technology Endpoints in a System 54

4.5 Configuring Multiple Processes on a System with Multiple Intel® QAT Endpoints 55

4.6 Sample Configuration File .. 59

5.0 Supported APIs.. 60

5.1 Intel QuickAssist Technology APIs ... 60

5.1.1 Intel® QAT API Limitations .. 60
5.1.1.1 Resubmitting After Getting an Overflow Error ... 63
5.1.1.2 Dynamic Compression for Data Compression Service 64
5.1.1.3 Maximal Expansion with Auto Select Best Feature for Compression

... 65
5.1.1.4 Maximal Expansion and Destination Buffer Size..................................... 66

5.1.2 Data Plane APIs Overview .. 67
5.1.2.1 IA Cycle Count Reduction When Using Data Plane APIs 67
5.1.2.2 Usage Constraints on the Data Plane APIs .. 69
5.1.2.3 Cryptographic and Data Compression API Descriptions 70

5.1.3 Recovering from a Compress and Verify error ... 70
5.1.4 Counting Recovered Compression Errors .. 71
5.1.5 Compress and Verify Error log in Sysfs: .. 71

5.2 Additional APIs .. 72

Intel® QuickAssist Technology Software for Linux*

September 2020 Programmer’s Guide – Hardware Version v1.7

Document Number: 336210-014 Intel Confidential 5

5.2.1 Dynamic Instance Allocation Functions ... 72
5.2.1.1 icp_sal_userCyGetAvailableNumDynInstances 74
5.2.1.2 icp_sal_userDcGetAvailableNumDynInstances 74
5.2.1.3 icp_sal_userCyInstancesAlloc ... 75
5.2.1.4 icp_sal_userDcInstancesAlloc ... 75
5.2.1.5 icp_sal_userCyFreeInstances... 76
5.2.1.6 icp_sal_userDcFreeInstances .. 76
5.2.1.7 icp_sal_userCyGetAvailableNumDynInstancesByDevPkg 77
5.2.1.8 icp_sal_userDcGetAvailableNumDynInstancesByDevPkg 78
5.2.1.9 icp_sal_userCyInstancesAllocByDevPkg .. 78
5.2.1.10 icp_sal_userDcInstancesAllocByDevPkg .. 79
5.2.1.11 icp_sal_userCyGetAvailableNumDynInstancesByPkgAccel 80
5.2.1.12 icp_sal_userCyInstancesAllocByPkgAccel ... 80

5.2.2 IOMMU Remapping Functions ... 81
5.2.2.1 icp_sal_iommu_get_remap_size .. 81
5.2.2.2 icp_sal_iommu_map .. 82
5.2.2.3 icp_sal_iommu_unmap .. 82
5.2.2.4 IOMMU Remapping Function Usage .. 83

5.2.3 Polling Functions ... 84
5.2.3.1 icp_sal_pollBank ... 84
5.2.3.2 icp_sal_pollAllBanks .. 85
5.2.3.3 icp_sal_CyPollInstance ... 85
5.2.3.4 icp_sal_DcPollInstance ... 86
5.2.3.5 icp_sal_CyPollDpInstance ... 87
5.2.3.6 icp_sal_DcPollDpInstance ... 88

5.2.4 User Space Access Configuration Functions ... 88
5.2.4.1 icp_sal_userStart ... 89
5.2.4.2 icp_sal_userStop ... 90

5.2.5 Version Information Function .. 90
5.2.5.1 icp_sal_getDevVersionInfo ... 91

5.2.6 Reset Device Function ... 91
5.2.6.1 icp_sal_reset_device .. 91

5.2.7 Thread-Less APIs ... 92
5.2.7.1 icp_sal_poll_device_events .. 92
5.2.7.2 Return Value ... 92
5.2.7.3 icp_sal_find_new_devices ... 93

5.2.8 Compress and Verify (CnV) Related APIs .. 93
5.2.8.1 icp_sal_dc_get_dc_error() ... 93
5.2.8.2 icp_sal_dc_simulate_error() ... 94

5.2.9 Heartbeat APIs .. 95
5.2.9.1 icp_sal_check_device() ... 95
5.2.9.2 icp_sal_check_all_devices() .. 95
5.2.9.3 icp_sal_heartbeat_simulate_failure() ... 96

5.2.10 Device Polling APIs ... 96
5.2.10.1 icp_sal_poll_device_events() ... 96
5.2.10.2 cpaCyInstanceSetNotificationCb ... 97

Intel® QuickAssist Technology Software for Linux*

Programmer’s Guide – Hardware Version v1.7 September 2020

6 Intel Confidential Document Number: 336210-014

5.2.10.3 cpaDcInstanceSetNotificationCb ... 98
5.2.11 Congestion Management APIs ... 99

5.2.11.1 icp_sal_SymGetInflightRequests ... 99
5.2.11.2 icp_sal_AsymGetInflightRequests .. 100
5.2.11.3 icp_sal_dp_SymGetInflightRequests .. 101

5.2.12 Service Specific Polling APIs .. 101
5.2.12.1 icp_sal_ CyPollSymRing .. 102
5.2.12.2 icp_sal_ CyPollAsymRing ... 102

6.0 Application Usage Guidelines .. 104

6.1 Mapping Service Instances to Engines on the Intel® QAT Endpoint...................................... 104
6.1.1 Processor and Intel® QAT Endpoint Communication .. 104
6.1.2 Service Instances and Interaction with the Hardware .. 104
6.1.3 Service Instance Configuration ... 105
6.1.4 Cryptographic Load Balancing Using Multiple Intel® QAT Instances 105

6.2 Cryptography Applications ... 106

6.2.1 IPsec and SSL VPNs ... 106
6.2.2 Encrypted Storage .. 107
6.2.3 Web Proxy Appliances.. 107

6.3 Data Compression Applications .. 108

6.3.1 Compression for Storage .. 108
6.3.2 Data Deduplication and WAN Acceleration .. 109

Figures

Figure 1. Kernel Space Response Ring Processing ... 14
Figure 2. Intel® C62x Chipset (PCH) Acceleration Endpoint Configuration 1 ... 18
Figure 3. Intel® C62x Chipset (PCH) Acceleration Endpoint Configuration 2 ... 19
Figure 4. Incorporating Dummy Responses in an Intel® QAT Operation .. 39
Figure 5. Dynamic Compression Data Path .. 65
Figure 6. Amortizing the Cost of an MMIO Across Multiple Requests .. 68
Figure 7. Service Instance Configuration ... 105

Tables

Table 1. Terminology .. 10
Table 2. Reference Documents and Resources .. 12
Table 3. Services ... 21
Table 4. Intel® QuickAssist Technology /sys/kernel/debug Entries ... 23
Table 5. Intel® QuickAssist Technology Compression API Errors.. 24
Table 6. Acceleration Driver Return Codes ... 27
Table 7. Acceleration Driver Return Codes for Linux* Device Driver Operations 28
Table 8. AutoResetOnError Values ... 33
Table 9. Heartbeat System Virtual Files ... 36

Intel® QuickAssist Technology Software for Linux*

September 2020 Programmer’s Guide – Hardware Version v1.7

Document Number: 336210-014 Intel Confidential 7

Table 10. General Default Configuration Parameters ... 44
Table 11. General Parameters ... 45
Table 12. [KERNEL] Section Parameters .. 47
Table 13. [KERNEL_QAT] Section Parameters ... 47
Table 14. [KERNEL_QAT] Section Parameters ... 48
Table 15. Configuring Physical Functions and Virtual Functions .. 51
Table 16. Cryptographic Logical Instance Parameters ... 52
Table 17. Data Compression Logical Instance Parameters .. 53
Table 18. Compression/Decompression Overflow Behavior .. 63
Table 19. API Support for Compress and Verify and Recover .. 70

Intel® QuickAssist Technology Software for Linux*

Programmer’s Guide – Hardware Version v1.7 September 2020

8 Intel Confidential Document Number: 336210-014

Revision History

Date Revision Description

September
2020

014

Updates for Intel® QAT Programmers Guide Hardware Version 1.7

Added new sections:

¶ Section 5.2.11 Congestion Management APIs

¶ Section 5.2.12 Service Specific Polling APIs

June 2020 013

Updates for Intel® QAT software v4.10.0 release:

¶ Revised Note in Section 2.2.1.3

¶ Section 3.8.1 Added Note before Table 5

¶ Revised Table 10

¶ Table 11, removed StorageEnabled and PkeServiceDisabled parameter

February 2020 012
Updates for Intel® QAT software v4.8.0 release:

¶ Revised Section Chapter, 3.4 Application Payload Memory Allocation

November
2019

011

Updated:

¶ Permissions for using huge pages with included memory driver

¶ Rate limiting and device utilization measurement impacts performance when

active

October 2019 010

Updates for 4.7.0 release:

¶ Added virtual functions to list of configurable instances

¶ Rate limiting and device utilization measurement features

July 2019 009 Updated configuration options for concurrent requests (Tables 10, 14, 15)

June 2019 008

Updates for 4.6.0 release:

¶ Dummy responses added to Heartbeat feature

¶ Handling device failures in a ritualized environment

March 2019 007

Updates for 4.5.0 release:

¶ Updated list of general parameters

¶ Updated list of Intel QuickAssist entries in /sys/kernel/debug

December
2018

006
Updates for 4.4.0 release:

¶ Updated list of Compression API Errors

September
2018

005

Updates for 4.3.0 release:

¶ Intel QuickAssist API in kernel space

¶ Added epoll content

¶ Updates for the Compress and Verify and Recover feature

¶ Other minor changes

June 2018 004 Added description of Compress and Verify and Recover (CnVnR) capability.

Intel® QuickAssist Technology Software for Linux*

September 2020 Programmer’s Guide – Hardware Version v1.7

Document Number: 336210-014 Intel Confidential 9

April 2018 003
Added Heartbeat description. Clarified explanations of stateless and stateful
compression and decompression.

April 2018 002 Stateful compression is no longer supported by default.

August 2017 001 Initial public release.

§

Introduction

Intel® QuickAssist Technology Software for Linux*

Programmer’s Guide – Hardware Version v1.7 September 2020

10 Intel Confidential Document Number: 336210-014

1.0 Introduction

This programmer’s guide provides information on the architecture of the software and

usage guidelines. Information on the use of Intel® QuickAssist Technology (Intel® QAT)

APIs which, provide the interface to the acceleration services (cryptographic and data

compression), is documented in the related Intel® QAT software library documentation

(refer to Table 2. Reference Documents and Resources).

1.1 Terminology

In this document, for convenience:

¶ Software package is used as a generic term for the Intel® QAT software package for

Hardware Version 1.7.

¶ Acceleration driver is used as a generic term for the software that allows the Intel®

QAT Software Library APIs to access the Intel® QAT Endpoint(s).

Table 1. Terminology

Term Description

ADF Acceleration Driver Framework

AES Advanced Encryption Standard

ASIC Application Specific Integrated Circuit

BDF Bus Device Function

CBC Cipher Block Chaining mode

CCM Counter with CBC-MAC mode

CnV Compress and Verify

CnVnR Compress and Verify and Recover

CY Cryptography

DC Data Compression

DID Device ID

DMA Direct Memory Access

DTLS Datagram Transport Layer Security

DRAM Dynamic Random Access Memory

DSA Digital Signature Algorithm

Introduction

Intel® QuickAssist Technology Software for Linux*

September 2020 Programmer’s Guide – Hardware Version v1.7

Document Number: 336210-014 Intel Confidential 11

Term Description

ECC Elliptic Curve Cryptography

EVP Envelope (OpenSSL high-level cryptographic functions)

GCM Galois/Counter Mode

GPL General Public License

HMAC Hash-based Message Authentication Mode

IA Intel® Architecture

IDS/IPS Intrusion Detection System/Intrusion Prevention System

IEEE Institute of Electrical and Electronics Engineers

IKE Internet Key Exchange

Intel®
QAT

Intel® QuickAssist Technology

IOCTL Input Output Control function

IOMMU Input-Output Memory Management Unit

IPSec Internet Protocol Security

LKCF Linux* Kernel Cryptographic Framework

MGF Mask Generation Function

MSI Message Signaled Interrupts

NUMA Non-uniform Memory Access

PCH
Platform Controller Hub. In this manual, a Platform Controller Hub device
includes standard interfaces and Intel® QAT Endpoint and I/O interfaces.

RSA Rivest-Shamir-Adleman

SAL Service Access Layer

SATA Serial Advanced Technology Attachment

SGL Scatter Gather List

SHA Secure Hash Algorithm

SoC System-on-a-Chip

SPI Serial Peripheral Interconnect

SR-IOV Single Root I/O Virtualization

SSC Storage Subsystem Class

SSL Secure Sockets Layer

TCG Trusted Computing Group

TLS Transport Layer Security

Introduction

Intel® QuickAssist Technology Software for Linux*

Programmer’s Guide – Hardware Version v1.7 September 2020

12 Intel Confidential Document Number: 336210-014

Term Description

TPM Trusted Platform Module

USDM User Space DMA-able Memory

VF Virtual Function

VPN Virtual Private Network

WAN Wide Area Network

Table 2. Reference Documents and Resources

Document Title Document No./
Location

Intel® QuickAssist Technology Software for Linux* Release Notes
(Hardware Version 1.7)

336211

Intel® QuickAssist Technology Software for Linux* Getting Started Guide
(Hardware Version 1.7)

336212

Intel® QuickAssist Technology API Programmer’s Guide 330684

Intel® QuickAssist Technology Cryptographic API Reference Manual 330685

Intel® QuickAssist Technology Data Compression API Reference Manual 330686

Using Intel® Virtualization Technology (Intel® VT) with Intel® QuickAssist
Technology Application Note

330689

1.2 Typographical Conventions

The following conventions are used in this manual:

¶ Courier font - file names, path names, executables, code examples, command

line entries, API names, parameter names and other programming constructs

¶ Italic text – key terms and publication titles

¶ Bold text - graphical user interface entries, buttons, keyboard keys and Intel®

software names

§

Software Overview

Intel® QuickAssist Technology Software for Linux*

September 2020 Programmer’s Guide – Hardware Version v1.7

Document Number: 336210-014 Intel Confidential 13

2.0 Software Overview

In addition to the hardware mentioned in Section 3.1, Hardware/Software Overview, the

respective platforms have critical software components that are part of the offering.

The software includes drivers and acceleration code that runs on the Intel® Architecture

(IA) CPUs and on Intel® QAT Endpoints.

2.1 Intel® Communications Chipset 8925 to 8955 Series
Compatibility

While the focus of this document is on Intel® QAT software for Hardware Version 1.7,

the Intel® Communications Chipset 8925 to 8955 Series is also supported.

2.2 Logical Instances

A logical instance may be thought of as a channel to the hardware. A logical instance

allows an address domain (that is, kernel space and individual user space processes) to

configure the rings to be used by that address domain, and to define the behavior of

that ring.

2.2.1 Response Processing

In the kernel space, each logical instance can be configured to operate in one of the

two modes:

¶ Interrupt mode

¶ Polled mode

In the user space, each logical instance can be configured to operate in one of the two

modes:

¶ Polled mode

¶ Epolled mode

2.2.1.1 Interrupt Mode

The interrupt is only supported in Kernel space. In User space it is no longer supported;

therefore, the user space instance can no longer be configured with interrupt enabled

mode.

When configured in interrupt mode, the Accelerator Driver Framework (ADF) registers

an interrupt handler for response ring processing.

Software Overview

Intel® QuickAssist Technology Software for Linux*

Programmer’s Guide – Hardware Version v1.7 September 2020

14 Intel Confidential Document Number: 336210-014

As the latency in servicing an interrupt may be costly, the hardware-assisted ring

provides a mechanism to amortize the cost of interrupts into a single interrupt that may

service multiple responses. The interrupt coalescing section of the configuration file

allows the user to select the mechanism to amortize response interrupts using either a

time-based interrupt scheme or a number-of-responses-based scheme.

The ADF registers an interrupt handler to service the ring bank interrupt. When an

interrupt fires, the ADF services the interrupt and creates an interrupt handler bottom

half to consume the responses from the response ring. When MSI-X is supported, the

bottom half of the interrupt handler is created and affinitized to the configured core.

Callbacks to the application code occur in the context of this tasklet. This sequence is

shown in the following figure (the full sequence has been reduced for clarity).

Note: Linux* (and other operating systems) split an interrupt handler into two halves. The

socalled "top half" is the routine that actually responds to the interrupt, that is, the one you

register with request_irq. The "bottom half" is a routine that is scheduled by the top half to be

executed later, at a safer time.

Figure 1. Kernel Space Response Ring Processing

If the cost of servicing an interrupt and scheduling the interrupt handler bottom half is

not desired, a user can choose to disable interrupts and poll for responses. This

mechanism can be configured on a per logical instance basis by setting the Dc/

Software Overview

Intel® QuickAssist Technology Software for Linux*

September 2020 Programmer’s Guide – Hardware Version v1.7

Document Number: 336210-014 Intel Confidential 15

CyXIsPolled attribute of a logical instance in the configuration file to 1. When

configured to 1, the ADF does not service interrupts for that logical instance.

The ADF provides a set of APIs to allow the client to poll a single bank or all banks on a

given accelerator:

¶ icp_sal_pollBank - Poll the rings on the given bank number for a given

accelerator.

¶ icp_sal_pollAllBanks - Poll the rings on all banks for a given accelerator.

The Service Access Layer (SAL) provides an API to poll on an individual logical instance:

¶ icp_sal_CyPollInstance - Poll a specific cryptographic (Cy) logical instance,

¶ icp_sal_DcPollInstance - Poll a specific data compression (Dc) logical instance.

Refer to Section 5.2.3, “Polling Functions” for details on all the polling functions.

2.2.1.2 Epolled Mode

The event-based poll mode is called "epoll mode". The Intel® QAT Technology driver's

new mode supports the Linux* epoll interface. The Linux* epoll is a scalable I/O event

notification mechanism intended to replace the older select/poll system calls.

Note: For performance reasons, in epoll mode, only one instance (and one process) per bank

should be used.

To use the Linux* Epoll, the user space application uses the following APIs:

¶ epoll_create()/epoll_create1() - creates an epoll instance and returns a file

descriptor referring to that instance.

¶ epoll_ctl() - registers the file descriptors where polling occurs.

¶ epoll_wait() - waits for I/O events for the file descriptors registered via

epoll_ctl, blocking the calling thread if no events are currently available.

For more information, consult the Linux* epoll manuals, here:

http://man7.org/linux/man-pages/man7/epoll.7.html

Note: The Intel® QAT driver's epoll mode is only used by the user space instances, it is not

valid for the kernel space.

The driver's epoll mode consists of two parts: the kernel space part and the user space

part.

The Coalescing fields expose the same behavior for the epoll mode. If the interrupt is

delayed by changing the Coalescing fields, the event delivery to user space will be

delayed too.

http://man7.org/linux/man-pages/man7/epoll.7.html

Software Overview

Intel® QuickAssist Technology Software for Linux*

Programmer’s Guide – Hardware Version v1.7 September 2020

16 Intel Confidential Document Number: 336210-014

To enable epoll mode, ensure the following steps are followed:

1. In the configuration file, please use the "IsPolled = 2" for the user space instance;

for example:

Cy0Name = ñSSL0ò

Cy0IsPolled = 2

2. Whether the application uses the driver in a synchronous or asynchronous manner,

it should create a thread to call the Intel® QuickAssist Technology driver's epoll API

and the Linux* standard epoll interface.

The Intel® QuickAssist Technology driver's epoll API:

Crypto: icp_sal_CyGetFileDescriptor() /

icp_sal_CyPutFileDescriptor()

Compression: icp_sal_DcGetFileDescriptor() /

icp_sal_DcPutFileDescriptor()

The Linux* standard epoll interface:

2.2.1.3 epoll_create() / epoll_ctl() / epoll_wait()

Note: There is just one limitation for the epoll mode: Only configure one user space instance

for a bank. The instance can be a crypto or compression instance.

When a bank is used for the epoll mode, it means there is only one instance (crypto or

compression) for this bank. When the instance is used by a process, it means the

process is the only user for this bank. Other processes could not use this bank

temporarily. But if the process releases this instance, other processes can use this bank.

Since there is only one instance for this bank, no more than 16 user space instances are

available to configure all the banks for the epoll mode. (For the Intel® Communications

Chipset 8925-8955 series, up to 32 user space instances are available.)

If a process needs to provide compression and crypto services at the same time, it will

need two instances, which means the process needs two banks. In such a scenario, no

more than eight processes can be used. (For the Intel® Communications Chipset

89258955 series, up to 16 processes can be used.)

For comparison purposes, when the CPU is in the idle state, for the user space instance,

the standard poll mode ("IsPolled = 1 ") will poll the empty rings periodically and

the polling will consume some CPU cycles (for instance, 2% usage may appear

available when the CPU is in the idle state). But if epoll mode is used, the usage will stay

at 0% when the CPU is in the idle state.

Note: The standard poll mode performs better when the CPU is in the high load state.

For user space instances, interrupt mode is no longer supported. Interrupt mode for the

user space did not consume CPU cycles when there was no data in the response rings,

unlike the polling mode, which continues to check at specified intervals. With the epoll

Software Overview

Intel® QuickAssist Technology Software for Linux*

September 2020 Programmer’s Guide – Hardware Version v1.7

Document Number: 336210-014 Intel Confidential 17

support, standard Linux* epoll APIs, such as epoll_create()/epoll_ctl()/ epoll_wait(), can

be used.

Most web servers and socket-based applications, such as Nginx*, Apache*, etc., use one

of epoll /select/poll to be notified when a socket is available for reading or writing, and

then take appropriate action. With the epoll mode, the Intel® QuickAssist Technology

driver will have more seamless integration into existing applications, such as Nginx*, as

it will be using a standard notification mechanism.

§

 Acceleration Drivers Overview

Intel® QuickAssist Technology Software for Linux*

Programmer’s Guide – Hardware Version v1.7 September 2020

18 Intel Confidential Document Number: 336210-014

3.0 Acceleration Drivers Overview

Selected products in the Intel® C620 Series Chipset (also called Platform Controller

Hub, or PCH), the Intel® Atom® C3000 Processor Product Family (also called System-

ona-Chip, or SoC), and the Intel® Xeon® Processor D Family SoC support Intel®.

QuickAssist Technology. Depending on the product chosen, Intel® QAT accelerates both

or either of two services: cryptography (both symmetric and public key) and data

compression. The Intel® QAT Endpoints are exposed as PCI devices. Applications

running in user space typically access these services via the Intel® QAT APIs.

Applications that run in the Linux* kernel can also access some services via the Linux*

kernel cryptographic framework (LKCF) API.

3.1 Hardware/Software Overview

Because the hardware is accessed via the Intel® QAT APIs, it is not necessary to know all

of the hardware and software architecture details, but some knowledge of the

underlying hardware and software is helpful for performance optimization and debug

purposes. For example, to support customers with different acceleration performance

requirements, the Intel® C62x Chipset is available in different SKUs, and also supports

two different "fabric configurations". Figure 2 and Figure 3 show two possible

configurations for the acceleration endpoints in one Intel® C62x Chipset die.

Figure 2. Intel® C62x Chipset (PCH) Acceleration Endpoint Configuration 1

Acceleration Drivers Overview

Intel® QuickAssist Technology Software for Linux*

September 2020 Programmer’s Guide – Hardware Version v1.7

Document Number: 336210-014 Intel Confidential 19

Figure 3. Intel® C62x Chipset (PCH) Acceleration Endpoint Configuration 2

For a given platform, the specific internal connections and number of Intel® QAT

Endpoints per die (for instance, up to three for Intel® C62x Chipset) is

productdependent, SKU-dependent, routing-dependent (i.e., how many lanes are

routed), and configuration-dependent (e.g., with different fabric configuration soft-

straps). For each Intel® QAT Endpoint (e.g., QAT[0]) , hardware-assisted rings are used

as the communication mechanism to transfer requests between the CPU and the Intel®

QAT Endpoint(s) and vice-versa. The hardware supports 256 rings (per Intel® QAT

Endpoint), each with head and tail Configuration Status Register (CSR) pointers that are

mapped to PCIe* memory on the CPU. Rings are assigned by the provided software

based on the cryptography (CY) and data compression (DC) instances declared in the

configuration files. Refer to Section 3.2, Acceleration Driver Configuration File for more

information.

Each Intel® QAT Endpoint has multiple computation engines. For a given Intel® QAT

Endpoint, all rings associated with that endpoint are shared, and the hardware load

balances requests from these rings.

A user can write directly to the Intel® QAT APIs, or the use of Intel® QAT can be done via

frameworks that have been enabled by others including Intel® (for example, zlib*,

OpenSSL* libcrypto*, and the Linux* Kernel Crypto Framework).

 Acceleration Drivers Overview

Intel® QuickAssist Technology Software for Linux*

Programmer’s Guide – Hardware Version v1.7 September 2020

20 Intel Confidential Document Number: 336210-014

The driver architecture supports simultaneous operation of multiple applications.

3.2 Acceleration Driver Configuration File

An acceleration driver has a configuration file that is used to configure the driver for

runtime operation. There is a single configuration file for each Intel® QAT Endpoint in

the system. If Single-Root Input/Output Virtualization (SR-IOV) is enabled, a separate

configuration file is used for each virtual function, if applicable. The configuration file

format is described in Section 4.1, Configuration File Overview.

3.3 3.3 Utility for Loading Configuration Files and Sending
Events to the Driver - adf_ctl

The adf_ctl user space utility is separate to the driver and provides a mechanism for:

¶ Loading configuration file data to the kernel driver. The kernel space driver uses the

data and also provides the data to the user space driver.

¶ Sending events to the driver to bring devices up and down.

The adf_ctl provided with the Intel® QAT 1.7 driver can be used to interface with

Intel® QAT 1.7 devices and Intel® QAT 1.6 devices.

3.3.1 Usage

./adf_ctl [dev] [up|down|restart|reset] - to bring up, down, restart or reset

device(s) or

./adf_ctl status - to print device(s) status for instance:

./adf_ctl qat_dev0 down

./adf_ctl qat_dev1 up

3.4 Application Payload Memory Allocation

When performing offload operations through the Intel® QAT API, it is required that the

payload data be placed in a buffer that is resident, physically contiguous, and

DMAaccessible from the acceleration hardware. It is the application's responsibility to

provide buffers with these constraints.

Buffers are passed to the API with virtual addresses. The API translates these addresses

to the address information required by the hardware (refer to Table 3).

Acceleration Drivers Overview

Intel® QuickAssist Technology Software for Linux*

September 2020 Programmer’s Guide – Hardware Version v1.7

Document Number: 336210-014 Intel Confidential 21

Table 3. Services

Service API Reference

Cryptographic
service

cpaCySetAddressTranslation See the Intel® QuickAssist Technology

Cryptographic API Reference Manual
(refer to Table 2) for details.

Data

Compression
service

cpaDcSetAddressTranslation See the Intel® QuickAssist Technology
Data Compression API Reference
Manual (refer to Table 2) for details.

When the software requires the physical address, it calls the registered function.

Note: This address translation function is called at least once per request. Consequently, for

optimal performance, the implementation of this function should be optimized.

If using the Intel® QAT Data Plane API, buffers are passed to the Intel® QAT API as

physical addresses. The library passes this directly to the hardware, without the need

for translation.

3.5 User Space Additional Functions

To allow a user space process access to the Intel® QAT rings, the service access layer

must be configured to expose logical instances to the user space process. Logical

instances are configured using the per device configuration file.

To allow each process to have separate logical instances, the configuration file groups a

set of logical instances by name. The process then must call the icp_sal_userStart

function (refer to Section 5.2.4.1) at initialization time with the name associated with

the group of logical instances. Similarly, on process exit, to free the resources and make

them available to other processes with the same name, the process must call the

function icp_sal_userStop (refer to Section 5.2.4.2).

For example, the user can configure the driver to have two crypto logical instances

available for the process called "SSL". The user space process may then access these

logical instances by calling the cpaCyGetInstances function. The application may

then initiate a session with these logical instances and perform a cryptographic

operation. See the Intel® QuickAssist Technology Cryptographic API Reference

Manual (refer to Table 2. Reference Documents and Resources) for more

information on the API functions available for use.

For this example, the logical instances section of the configuration file is as follows:
[SSL]

NumberCyInstances = 2

NumberDcInstance s = 0

NumProcesses = 1

 Acceleration Drivers Overview

Intel® QuickAssist Technology Software for Linux*

Programmer’s Guide – Hardware Version v1.7 September 2020

22 Intel Confidential Document Number: 336210-014

LimitDevAccess = 0

Crypto - User instance #0

Cy0Name = "SSL0"

Cy0IsPolled = 1

List of core affinities Cy0CoreAffinity = 1

Crypto - User instance #1

Cy1Name = ñSSL0ò

Cy1IsPolled = 1

List of core affinities

Cy1CoreAffinity = 2

In this example, the user process SSL configures two logical instances (called "SSL0"

and "SSL1").

3.6 Managing Intel® QuickAssist Technology Endpoints Using
qat_service

The qat_service script is installed with the software package in the /etc/init.d/

directory. The script allows a user to start, stop, or query the status (up or down) of a

single Intel® QAT Endpoint or all Intel® QAT Endpoints in the system.

Usage:
./qat_service start| |stop||status||restart||shutdown

To view all Intel® QAT Endpoints in the system, use:
./qat_service status

If there are two Intel® QAT Endpoints in the system, for example, the output will be

similar to the following:
qat_dev0 - type: c6xx, inst_id: 0, b sf: 06:00:0, #accel: 5

#engines: 10 state: up

qat_dev1 - type: c6xx, inst_id: 1, bsf: 83:00:0, #accel: 5

#engines: 10 state: up

For a system with multiple Intel® QAT Endpoints, you can start, stop or restart each

individual device by passing the Intel® QAT Endpoint to be restarted or stopped as a

parameter (qat_dev<N>). For example:
./qat_service stop qat_dev0

where the device number <N> is equal to 0 in this case.

The shutdown qualifier enables the user to bring down all Intel® QAT Endpoints and

unload driver modules from the kernel. This contrasts with the stop qualifier, which

brings down one or more Intel® QAT Endpoints, but does not unload kernel modules, so

other Intel® QAT Endpoints can still run.

Acceleration Drivers Overview

Intel® QuickAssist Technology Software for Linux*

September 2020 Programmer’s Guide – Hardware Version v1.7

Document Number: 336210-014 Intel Confidential 23

Note: In systems with more than three devices it might be necessary to change the

qat_service timeout in /etc/systemd/system/qat_service.service.d/ startup -

timeout.conf.

3.7 Intel® QAT Entries in the /sys/kernel/ debug Filesystem

Debug information for the driver and configuration is available with the entries

/sys/kernel/debug/qat_* . This includes:

Table 4. Intel® QuickAssist Technology /sys/kernel/debug Entries

Entry Description

cnv_errors Indicates number of compressAndVerify errors. Refer to
Section 5.1.5, Compress and Verify Error log in Sysfs:

dev_cfg Displays internal device configuration information

frequency Displays frequency of Acceleration Engines

fw_counters Displays Acceleration Engine firmware requests/responses

heartbeat

heartbeat_failed

heartbeat_sent

Refer to Section 3.17.3.3.1 System Virtual Files

transport Contains firmware request/response data. Available only for
kernel space instances.

version Includes package version information

3.8 Compression Status Codes

The CpaDcRqResults structure should be checked for compression status codes in

the CpaDcReqStatus data field. The mapping of the error codes to the enums is

included in the quickassist/include/dc/cpa_dc.h file.

3.8.1 Intel® QuickAssist Technology Compression API Errors

The Intel® QuickAssist Technology Compression APIs that send requests to the

compression hardware can return the error codes shown in Table 5. These APIs are:
ÅcpaDcCompressData()

ÅcpaDcDecompressData()

ÅcpaDcDpEnqueueOp()

ÅcpaDcDpEnqueueOpBatch()

Note: Decompression issues in Table 5 may also apply to the compression use case due to

potential issues encountered during a Compress-and-Verify operation. In this case, the file(s)

 Acceleration Drivers Overview

Intel® QuickAssist Technology Software for Linux*

Programmer’s Guide – Hardware Version v1.7 September 2020

24 Intel Confidential Document Number: 336210-014

/sys/kernel/debug/qat_*/cnv_errors may show these nested errors. In some cases,

the suggested corrective action may need to be to store the block uncompressed or to

compress the block with software.

Table 5. Intel® QuickAssist Technology Compression API Errors

Error

Code
Error Type Description

Suggested Corrective

Action(s)

0 CPA_DC_OK
No error detected by
compression hardware.

None.

-1
CPA_DC_INVALID_BLOCK
_TYPE

Invalid block type (type
= 3); invalid input
stream detected for
decompression

Decompression error.
Discard output. For a
stateless session, resubmit
affected request. For a
stateful session, abort the
session calling
CpaDcRemoveSession().

-2
CPA_DC_BAD_STORED_
BLOCK_LEN

Stored block length did
not match one's
complement; invalid
input stream detected

Decompression error.
Discard output. For a
stateless session, resubmit
affected request. For a
stateful session, abort the
session calling
CpaDcRemoveSession().

-3
CPA_DC_TOO_MANY
_CODES

Too many length or
distance codes; invalid
input stream detected

Decompression error.
Discard output. For a
stateless session, resubmit
affected request. For a
stateful session, abort the
session calling
CpaDcRemoveSession().

-4
CPA_DC_INCOMPLETE
_CODE_LENS

Code length codes
incomplete; invalid
input stream detected

Decompression error.
Discard output. For a
stateless session, resubmit
affected request. For a
stateful session, abort the
session calling
CpaDcRemoveSession().

-5 CPA_DC_REPEATED_LENS
Repeated lengths with
no first length; invalid
input stream detected

Decompression error.
Discard output. For a
stateless session, resubmit
affected request. For a
stateful session, abort the
session calling
CpaDcRemoveSession().

-6 CPA_DC_MORE_REPEAT

Repeat more than
specified lengths;
invalid input stream
detected

Decompression error.
Discard output. For a
stateless session, resubmit
affected request. For a
stateful session, abort the
session calling
CpaDcRemoveSession().

Acceleration Drivers Overview

Intel® QuickAssist Technology Software for Linux*

September 2020 Programmer’s Guide – Hardware Version v1.7

Document Number: 336210-014 Intel Confidential 25

Error

Code
Error Type Description

Suggested Corrective

Action(s)

-7
CPA_DC_BAD_LITLEN
_CODES

Invalid literal/length
code lengths; invalid
input stream detected

Decompression error.
Discard output. For a
stateless session, resubmit
affected request. For a
stateful session, abort the
session calling
CpaDcRemoveSession().

-8
CPA_DC_BAD_DIST
_CODES

Invalid distance code
lengths; invalid input
stream detected

Decompression error.
Discard output. For a
stateless session, resubmit
affected request. For a
stateful session, abort the
session calling
CpaDcRemoveSession().

-9 CPA_DC_INVALID_CODE

Invalid literal/length or
distance code in fixed or
dynamic block; invalid
input stream detected

Decompression error.
Discard output. For a
stateless session, resubmit
affected request. For a
stateful session, abort the
session calling
CpaDcRemoveSession().

-10 CPA_DC_INVALID_DIST

Distance is too far back
in fixed or dynamic
block; invalid input
stream detected

Decompression error.
Discard output. For a
stateless session, resubmit
affected request. For a
stateful session, abort the
session calling
CpaDcRemoveSession().

-11 CPA_DC_OVERFLOW

Overflow detected. This
is not an error, but an
exception. Overflow is
supported and can be
handled.

Resubmit with a larger
output buffer when
appropriate. Table 18 in
Section 5.1.1.1 gives
details on the various
overflow exceptions.

-12 CPA_DC_SOFTERR
Other non-fatal
detected.

Discard output. For a
stateless session, resubmit
affected request. For a
stateful session, abort the
session calling
CpaDcRemoveSession().

-13 CPA_DC_FATALERR Fatal error detected.
Discard output and abort
the session calling
CpaDcRemoveSession().

 Acceleration Drivers Overview

Intel® QuickAssist Technology Software for Linux*

Programmer’s Guide – Hardware Version v1.7 September 2020

26 Intel Confidential Document Number: 336210-014

Error

Code
Error Type Description

Suggested Corrective

Action(s)

-14
CPA_DC_MAX
_RESUBMITERR

On an error being
detected, the firmware
attempted to correct
and resubmitted the
request, however, the
maximum resubmit
value was
exceeded.Maximal value
is internally set in the
firmware to 10
attempts.
This is a QAT1.6 error
only. This error code is
considered as a fatal
error.

Discard output and abort
the session calling
CpaDcRemoveSession().

-15
CPA_DC_INCOMPLETE
_FILE_ERR

This decompression
error can be reported
only by QAT 1.7 devices.
However, it is not
exposed to the
application.
The input file is
incomplete. This
indicates that the
request was submitted
with a
CPA_DC_FLUSH_FINAL.
However, a BFINAL bit
was not found in the
request.

No corrective action is
required as it is not
exposed to the application.

-16
CPA_DC_WDOG_TIMER _
ERR

The request was not
completed as a
watchdog timer
hardware event
occurred.

Discard output and
resubmit the affected
request.

-17 CPA_DC_EP_HARDWARE

This is a recoverable
error available only with
QAT1.7 devices.
Request was not
completed as an end
point hardware error
occurred (for example, a
parity error).

Discard output and abort
the session calling
CpaDcRemoveSession().

-18 CPA_DC_VERIFY_ERROR

Compress and Verify
(CnV). This is a
compression direction
error only. During the
decompression of the
compressed payload, an
error was detected and
the deflate block
produced is invalid.

Discard output; resubmit
affected request.

Acceleration Drivers Overview

Intel® QuickAssist Technology Software for Linux*

September 2020 Programmer’s Guide – Hardware Version v1.7

Document Number: 336210-014 Intel Confidential 27

Error

Code
Error Type Description

Suggested Corrective

Action(s)

-19
CPA_DC_EMPTY_DYM_BL
K

Decompression request
contained an empty
dynamic stored block
(not supported).

Discard output.

Note: Except for the errors CPA_DC_OK, CPA_DC_OVERFLOW, CPA_DC_FATALERR,

CPA_DC_MAX_RESUBMITERR, CPA_DC_WDOG_TIMER_ERR, CPA_DC_VERIFY_ERR, and

CPA_DC_EP_HARDWARE_ERR, the rest of the error codes can be considered as invalid input stream

errors.

Note: When the suggested corrective action is to discard the output, it implies that the

application must also ignore the consumed data, the produced data, and the checksum values.

3.9 Stateful Compression Unsupported

Stateful compression is no longer supported.

3.10 Stateless Compression Level Details

Throughput and compression ratio for stateless compression can be adjusted with the

compression levels to achieve particular requirements. The most recent software

packages now support four compression levels and history buffer size is ignored.

Compression levels 5 to 9 are retained for backwards compatibility, but map to level 4.

Compression levels 1 to 4 translate to search depth 1, 4, 8, and 16, respectively.

3.11 Acceleration Driver Return Codes

Table 6 shows the return codes used by various components of the acceleration driver,

defined in quickassist/include/cpa.h .

Table 6. Acceleration Driver Return Codes

Return Type Return Code Description

CPA_STATUS_SUCCESS 0 Requested operation was successful.

CPA_STATUS_FAIL -1

General or unspecified error occurred.
Refer to the console log user space
application or to /var/log/messages in
kernel space for more details of the
failure.

 Acceleration Drivers Overview

Intel® QuickAssist Technology Software for Linux*

Programmer’s Guide – Hardware Version v1.7 September 2020

28 Intel Confidential Document Number: 336210-014

CPA_STATUS_RETRY -2
Recoverable error occurred. Refer to
relevant sections of the API for specifics
on what the suggested course of action.

CPA_STATUS_RESOURCE -3

Required resource is unavailable. The
resource that has been requested is
unavailable. Refer to relevant sections of
the API for specifics on what the
suggested course of action.

CPA_STATUS_INVALID_PARAM -4 Invalid parameter has been passed in.

CPA_STATUS_FATAL -5

Fatal error has occurred. A serious error
has occurred. Recommended course of
action is to shut down and restart the
component.

CPA_STATUS_UNSUPPORTED -6

The function is not supported, at least not
with the specific parameters supplied.
This may be because a particular
capability is not supported by the current
implementation.

CPA_STATUS_RESTARTING -7

The API implementation is restarting. This
may be reported if, for example, a
hardware implementation is undergoing a
reset.

Table 7 shows the return codes used by the driver to handle Linux* device driver

operations.

Table 7. Acceleration Driver Return Codes for Linux* Device Driver Operations

Return Type Return Code Description

SUCCESS 0 Operation was successful.

FAIL 1

General error occurred. Refer to the
console log user space application or to
/var/log/ messages in kernel space for
more details of the failure.

-EPERM -1
Operation is not permitted. Used during
ioctl operations.

-EIO -5
Input/Output error occurred. Used when
copying configuration data to and from
user space.

-EBADF -9
Bad File Number. Used when an invalid file
descriptor is detected.

-EAGAIN -11
Try Again. Used when a recoverable
operation occurred.

Acceleration Drivers Overview

Intel® QuickAssist Technology Software for Linux*

September 2020 Programmer’s Guide – Hardware Version v1.7

Document Number: 336210-014 Intel Confidential 29

Return Type Return Code Description

-ENOMEM -12
Out of Memory. Memory resource that has
been requested is not available.

-EACCES -13
Permission Denied. Used when the
operation failed to connect to a process or
open a device.

-EFAULT -14
Bad Address. Used when an operation
detects invalid parameter data.

-ENODEV -19
No Such Device. Used when an operation
detects invalid device id.

-ENOTTY -25
Invalid Command Type. Used when an
ioctl operation detects an invalid
command type.

3.12 Batch and Pack Compression Unsupported

Batch and Pack (BnP) compression is no longer supported.

3.13 Compress and Verify Feature

The Compress and Verify (CnV) feature checks and ensures data integrity in the

compression operation of the Data Compression API. This feature introduces an

independent capability to verify the compression transformation.

Refer to Intel® QuickAssist Technology Data Compression API Reference Manual .

Note:
1. CnV is always enabled via the cpaDcCompressData() API.

2. CnV supports compression operations only.

3. The compressAndVerify flag in the CpaDcDpOpData structure should be set to CPA_TRUE

when using the cpaDcDpEnqueueOp() or cpaDcDpEnqueueOpBatch() API. These API are

declared in the API file cpa_dc_dp.h .

4. The compressAndVerify flag in the CpaDcOpData structure should be set to CPA_TRUE when

using the cpaDcCompressData2() API. This API is declared in the API file cpa_dc.h .

The CnV functionality is implemented in the Data Compression APIs

cpaDcCompressData(), cpaDcCompressData2(), cpaDcDpEnqueueOp() and

cpaDcDpEnqueueOpBatch() for the compression path only.

These APIs are declared and documented in the API file cpa_dc.h.

 Acceleration Drivers Overview

Intel® QuickAssist Technology Software for Linux*

Programmer’s Guide – Hardware Version v1.7 September 2020

30 Intel Confidential Document Number: 336210-014

Note: It is possible to recover from Compress and Verify errors in a seamless manner. Refer

to the Compress and Verify and Recover discussion in Section 5.1.3.

3.14 Running Applications as Non-Root User

The installation of Intel® QAT software package configures the driver to allow

applications to run as Non-Root User. The users must be added to the 'qat' group.

When the make install is performed at the directory where the Intel® QAT package is

installed, the following udev file is created that is responsible for setting up non-root

access.
KERNEL=="qat_adf_ctl" MODE="0660" GROUP="qat"

KERNEL=="qat_dev_processes" MODE="0660" GROUP="qat"

KERNEL=="usdm_drv" MODE="0660" GROUP="qat"

ACTION=="add", DEVPATH=="/module/usdm_drv" SUBSYSTEM= ="module"

RUN+="/bin/mkdir / dev/hugepages/qat"

ACTION=="add", DEVPATH=="/module/usdm_drv" SUBSYSTEM=="module"

RUN+="/bin/chgrp qat /dev/hugepages/qat"

ACTION=="add", DEVPATH=="/module/usdm_drv" SUBSYSTEM=="module"

RUN+="/bin/chmod 0770 /dev/hugepages/qat"

ACTION=="remove", DEVPATH=="/module/usdm_drv" SUBSYSTEM=="module"

RUN+="/bin/rmdir

/dev/hugepages/qat"

KERNEL=="uio*", ATTRS{vendor}=="0x8086", ATTRS{device}=="0x0435"

MODE="0660" GROUP="qat"

KERNEL=="uio*", ATTRS{vendor}=="0x8086", ATTRS{device}=="0x0443"

MODE="0660" GROUP="qat"

KERNEL=="uio*", ATTRS{vendor}=="0x8086", ATTRS{device}=="0x37c8"

MODE="0660" GROUP="qat"

KERNEL=="uio*", ATTRS{vendor}=="0x8086", ATTRS{device}=="0x37c9"

MODE="0660" GROUP="qat"

KERNEL=="uio*", ATTRS{vendor}=="0x8086", ATTRS{device}=="0x6f54"

MODE="0660" GROUP="qat"

KERNEL=="uio*", ATTRS{vendor}=="0x8086", ATTRS{device}=="0x6f55"

MODE="0660" GROUP="qat"

KERNEL=="uio*", ATTRS{vendor}=="0x8086", ATTRS{device}=="0x19e2"

MODE="0660" GROUP="qat"

KERNEL=="uio*", ATTRS{vendor}=="0x8086", ATTRS{device}=="0x19e3"

MODE="0660" GROUP="qat"

The updates to the udev rules are performed during the installation of the Intel® QAT

driver.

The following steps need to be manually applied:

Change the amount of max locked memory for the username that is included in the

group name (which is by default 64). This can be done by specifying the limit in

/etc/security/limits.conf.

Acceleration Drivers Overview

Intel® QuickAssist Technology Software for Linux*

September 2020 Programmer’s Guide – Hardware Version v1.7

Document Number: 336210-014 Intel Confidential 31

@qat - memlock 4096

3.15 Random Number Generation

Starting with Intel® QuickAssist Technology Hardware version 1.7, Intel® QAT no longer

includes random number generation capability, because this capability is already

included in the CPU and is available via the RDRAND and RDSEED instructions.

3.16 Huge Pages with the Included Memory Driver

The included User space DMAable Memory driver (usdm_drv.ko) supports 2 MB

pages. (It allows direct access to main memory by devices other than the CPU.) The use

of 2 MB pages provides benefits, but also requires additional configuration. Use of this

capability assumes that a sufficient number of huge pages are allocated in the

operating system for the particular use case and configuration.

Here are some example use cases:
insmod ./usdm_drv.ko

Default settings applied.
insmod ./usdm_drv.ko max_mem_numa=32768

Maximum amount of Non-uniform Memory Access (NUMA) type memory that the User

Space DMAable Memory (USDM) driver can allocate is 32 MB in total for all processes.

Huge pages are disabled.
insmod ./usdm_drv.ko max_huge_pages=50

max_huge_ pages_per_process=5

Maximum number of huge pages that the USDM can allocate is 50 in total and 5 per

process (up to 10 processes, 0 for the next processes).
insmod ./usdm_drv.ko max_huge_pages=3

max_huge_pages_per_process=5

An erroneous configuration, maximum number of huge pages that USDM can allocate is

3 total; 3 for a first process, 0 for the next processes.
insmod ./usdm_drv.ko max_huge_pages_per_process=5

An invalid configuration, huge pages are disabled because max_huge_pages is 0 by

default.
insmod ./usdm_drv.ko max_huge_pages=5

An invalid configuration, huge pages are disabled because

max_huge_pages_per_process is 0 by default.

 Acceleration Drivers Overview

Intel® QuickAssist Technology Software for Linux*

Programmer’s Guide – Hardware Version v1.7 September 2020

32 Intel Confidential Document Number: 336210-014

Note: The use of huge pages may not be supported for all use cases. For instance, depending

on the driver version, some limitations may exist for an Input/Output Memory Management

Unit (IOMMU).

3.17 Heartbeat

Under some circumstances, firmware in the Intel® QAT devices could become

unresponsive, requiring a device reset to recover. The Intel® QAT Heartbeat feature

provides a mechanism for the customer application to detect and reset unresponsive

devices. It also notifies the application processes of the start and end of the reset

operation and suspends all Intel® QAT instances between the events.

3.17.1 Heartbeat Operation

A Heartbeat-enabled Intel® QAT device firmware periodically writes counters to a

specified physical memory location. A pair of counters per thread is incremented at the

start and end of the main processing loop within the firmware. Checking for Heartbeat

consists of checking the validity of the pair of counter values for each thread. Stagnant

counters indicate a firmware hang.

3.17.1.1 Initialization

At startup, the Intel® QAT device driver allocates memory for the counter pairs to be

written by the firmware and then sends a message to the firmware to start the

Heartbeat functionality.

3.17.1.2 Heartbeat monitoring

Heartbeat check/monitoring refers to invocation of one of the two API calls that checks

if the device is responsive. Heartbeat failure refers the API returning failure.

The Intel® QAT driver does not monitor for Heartbeat. It should be initiated by a

Heartbeat management thread calling one of the following APIs periodically:

¶ icp_sal_check_d evice(Cpa32U accelId);

¶ icp_sal_check_all_devices(void);

A failure return code implies the device has failed or hung.

The Heartbeat management thread should satisfy the following conditions:

¶ For any given device, only one such process/thread should monitor.

¶ One process can monitor one or more devices.

¶ It can be a user application that uses Intel® QAT services, or a separate

management/control plane process.

Acceleration Drivers Overview

Intel® QuickAssist Technology Software for Linux*

September 2020 Programmer’s Guide – Hardware Version v1.7

Document Number: 336210-014 Intel Confidential 33

¶ In virtualized environment, monitoring process(es)/thread(s) must run in the context

of the host or hypervisor.

3.17.1.3 Resetting a failed device

A device can be configured for automatic reset by the Intel® QAT framework or

manually reset by the application by using the AutoResetOnError field in the device

configuration file /etc/<device>.conf , as shown in Table 8.

Table 8. AutoResetOnError Values

AutoResetOnError Value Action on Heartbeat Failure

0 (default) Do not reset the device

1 Reset the device automatically

:If an Intel® QAT device is not configured for automatic reset, the management thread

should reset it using the icp_sal_reset_device(Cpa32U accelId) API.

The icp_sal_reset_device() function starts an asynchronous reset sequence and

returns immediately. The reset function should not be called again until the device has

completed the reset to avoid a reset storm. The icp_sal_check_device(<device

id>) function could be called in a loop to check if the device reset is still in progress.

If the application devices are all configured for automatic reset then the

icp_sal_check_all_devices() function could be used; otherwise, the function

should not be used because it does not return the identity of the failed device, which is

a required parameter for the icp_sal_reset_device() function.

3.17.1.3.1 Function signatures

The details of the above functions, parameters, and return values can be found in

Section 5.2, Additional APIs.

3.17.2 Incorporating Heartbeat into Intel® QAT Applications

A typical Intel® QAT user application consists of two tasks:

¶ The first task is typically an application thread that initializes Intel® QAT instances and

sessions, and then submits service requests for Intel® QAT crypto or compression.

¶ If an application employs polling to receive Intel® QAT service responses, then this

task is also an application thread. Alternatively, responses are received as an

interrupt handler.

Two more tasks are required to support Heartbeat:

 Acceleration Drivers Overview

Intel® QuickAssist Technology Software for Linux*

Programmer’s Guide – Hardware Version v1.7 September 2020

34 Intel Confidential Document Number: 336210-014

¶ The first is a management task to monitor the devices for failure or hang and then

resets them, when required. As discussed earlier, this could be an application thread

of an independent management process.

¶ The second task is an application thread that polls for device reset events:

3.17.2.1 ð CPA_INSTANCE_EVENT_RESTARTING (device is restarting)

— CPA_INSTANCE_EVENT_RESTARTED (device restart is complete)

If the application employs polling to receive Intel® QAT service responses, then this task

could be included in the same polling loop.

The polling for device events is done using the API:

icp_sal_poll_device_events() .

The two callback functions for crypto and compression are registered using the

following APIs:

¶ cpaCyInstanceSetNotificationCb

¶ cpaDcInstanceSetNotificationCb

The details of the above functions, parameters, and return values can be found in

Section 5.2, Additional APIs

3.17.2.1.1 Restart Sequence

During the restart sequence, the user space library releases the memory used for rings

and other data structures as part of the shutdown and reallocates them when the

restart is completed. This is transparent to the user application, so it can continue to

use the same logical instance after reset to submit Intel® QAT service requests. Any

memory allocated by the user application for the Intel® QAT service is untouched

during device reset.

A typical Heartbeat error use-case is as follows:

1. The driver and the firmware is loaded, initialized and started.

2. The user-space application registers to receive instance notifications by calling

cpaCyInstanceSetNotificationCb and

cpaDcInstanceSetNotificationCb .

3. The management thread monitors for the device’s heartbeat. When a device is

unresponsive, a device reset is initiated by this thread or by the Intel® QAT

framework depending on the device configuration.

4. The kernel-space process sends the Restarting event to the user-space process.

5. The user-space driver passes the device restarting event to all the registered

application instances. It also frees memory and rings associated with the registered

instances.

6. The kernel-space driver triggers the device reset.

Acceleration Drivers Overview

Intel® QuickAssist Technology Software for Linux*

September 2020 Programmer’s Guide – Hardware Version v1.7

Document Number: 336210-014 Intel Confidential 35

7. During reset, the Intel® QAT service request made by the user application returns

one of:
ð CPA_STATUS_FAIL

ð CPA_STATUS_RETRY

ð CPA_STATUS_RESTARTING

8. When the device reset is complete, the kernel-space driver sends a device

Restarted event to the user space driver.

9. The user space driver allocates the memory and rings and then forwards the device

Restarted event to each of the registered instances.

3.17.2.1.2 Status of Packets in Flight (Crypto Applications Only)

When a device has fatal errors, the application ordinarily cannot determine whether or

not inflight requests have been processed successfully.

The current Intel® QAT release includes a dummy response feature that creates mock

responses to all requests submitted during a fatal error condition, so the application

can detect them and, therefore, know which requests need to be resubmitted to the

available devices or to the software.

Note: The sequence of dummy responses will match the sending request sequence for all

requests submitted during a fatal error.

Since the dummy response feature only supports Public Key Encryption (PKE), dummy

responses may be generated only when the icp_sal_CyPollInstance() function is

called, since it is the function for crypto services.

The icp_sal_poll_device_events() function should also be called by the

application, so that the application get a notification when the device encounters a

failure and dummy responses are generated when calling

icp_sal_CyPollInstance() for the inflight requests.

3.17.2.1.3 Determining Device ID

The <device id> that is passed as a parameter to several Heartbeat API is the

numeric suffix of the device name displayed by the following command. (device name:

qat_dev0)
#service qat_service status

There is 1 QAT accelera tion device(s) in the system: qat_dev0 -

type: c3xxx, inst_id: 0, node_id: 0, bsf: 01:00.0, #accel: 3

#engines: 6 state: up

The Intel® QAT library has no API to discover the device number easily. However, an

application can use the IOCTLs IOCTL_GET_NUM_DEVICES and

 Acceleration Drivers Overview

Intel® QuickAssist Technology Software for Linux*

Programmer’s Guide – Hardware Version v1.7 September 2020

36 Intel Confidential Document Number: 336210-014

IOCTL_STATUS_ACCEL_DEV to find the device_id of a particular device if they

know the Bus Device Function (BDF). Refer to perform_query_dev() in
./adf_ctl.cpp.

3.17.3 Testing Heartbeat

Two debug capabilities are available to assist the developers incorporating Heartbeat

into their applications:

¶ Simulation of Heartbeat failure

¶ System virtual files under /sys/kernel/debug/

3.17.3.1 Simulated Heartbeat Failure Configuration

The Heartbeat feature is always enabled in the package. However, a debug capability

that simulates device failure can be enabled during the configure step as follows:
./configure -- enable - icp - hb- fail - sim

3.17.3.2 Simulating Heartbeat Failure

Simulating Heartbeat failure can be accomplished using two methods:

¶ Using the API icp_sal_heartbeat_simulate_failure(<device id>)

¶ Executing the command:

3.17.3.3 # cat /sys/kernel/debug/<device>/heartbeat_sim_fail

3.17.3.3.1 System Virtual Files

The Heartbeat feature implements the following system virtual files under the /sys/

kernel/debug/qat_cxxx_<your_device_BDF>/ directory.

Table 9. Heartbeat System Virtual Files

File Content

heartbeat 0: Device is responsive. -1: Device is NOT responsive.

heartbeat_failed Number of times the device became unresponsive.

heartbeat_sent Number of times the control process checked if the device is responsive.

A developer could simulate the Heartbeat management process by running the

following script in the background:
#!/bin/bash while : do

 cat /sys/kernel/debug/<device>/heartbeat > /dev/null

sleep 1 done

Acceleration Drivers Overview

Intel® QuickAssist Technology Software for Linux*

September 2020 Programmer’s Guide – Hardware Version v1.7

Document Number: 336210-014 Intel Confidential 37

3.17.3.3.2 Heartbeat Polling Frequencies

The application developer should decide on the following two Heartbeat polling

frequencies:

¶ Device Heartbeat monitoring

¶ Checking for device reset events

Device Heartbeat monitoring

Consider the following points when determining the frequency of Heartbeat

monitoring:

¶ Increasing Heartbeat monitoring frequency will minimize the customer’s system

downtime

¶ However, since device unresponsiveness should be an infrequent event, high

frequency Heartbeat monitoring wastes CPU cycles.

¶ Also, if there are large Intel® QAT service requests that take some time to complete,

high frequency Heartbeat monitoring could result in false reports of

unresponsiveness.

Checking for device reset events

If the application uses polling for reading Intel® QAT service responses, there is no value

in checking for resets more frequently. Since device unresponsiveness is an infrequent

occurrence, frequency of checking for reset events could be a fraction of the frequency

of polling for Intel® QAT service responses.

3.18 Handling Device Failures in a Virtualized Environment

The Heartbeat feature in the acceleration software can be used in a virtualized

environment. Refer to the Using Intel® Virtualization Technology (Intel® VT) with

Intel® QuickAssist Technology Application Note (refer to Table 2) for more details

on enabling SR-IOV and the creation of Virtual Functions (VFs) from a single Intel®

QuickAssist Technology acceleration device to support acceleration for multiple Virtual

Machines (VMs).

The following sequence describes a possible use case for using the Heartbeat feature in

a virtualized environment.

1. The Intel® QAT Physical Function driver (PF driver) is loaded, initialized and started.

2. The Intel® QAT Virtual Function driver (VF driver) is loaded, initialized and started in

the Guest OS in the VM.

3. The PF driver detects that the firmware is unresponsive (using either of the

following methods: User Proc Entry Read (not Enabled by Default) on page 47 or

User Application Heartbeat APIs (not Enabled by Default) on page 48).

 Acceleration Drivers Overview

Intel® QuickAssist Technology Software for Linux*

Programmer’s Guide – Hardware Version v1.7 September 2020

38 Intel Confidential Document Number: 336210-014

4. The PF driver sends the “Restarting” event message to the VF via the internal PFto-

VF communication messaging mechanism.

5. The VF driver sends the “Restarting” event to the application's registered callback.

The callback is registered using either of the Intel® QAT API functions

cpaDcInstanceSetNotificationCb() or

cpaCyI nstanceSetNotificationCb() in the Guest OS. (The application's

callback function may perform any application-level cleanup.)

6. The PF driver starts the reset sequence (save state, initiate reset, and restore state).

7. The user restarts the Guest OS and loads the VF driver and application in the Guest

OS.

Note: If the Heartbeat feature in the acceleration software is not enabled, the PF driver will

not notify the VF driver that the firmware is unresponsive.

Note: The error detection mechanisms are not available on the VF driver in the VM, but

device errors caused by any of the software running on the VM will be detected by the PF

driver using the above mechanisms.

3.19 Incorporating Dummy Responses into an Intel® QAT
Application

The dummy response feature has been incorporated in a scenario with the Intel® QAT

engine and Nginx*. Figure 4 below illustrates how it works. This can be used as a

reference to so-called “software fallback.”

The Intel® QAT engine is a shim layer between OpenSSL libcrypto and Intel® QAT

Library. The Intel® QAT Library will generate failover responses.

The Heartbeat Monitoring Daemon, a single process, is a daemon which is used to

check the device status periodically and trigger the driver the reset the device when

heartbeat failure happens. Its only activity is calling icp_sal_check_device() or

icp_sal_check_all_devices() periodically.

The Intel® QAT Engine polls for and handles “device error” and “device ok” events (via

udev). It keeps track of the number of devices which are active.

¶ If some, but not all, Intel® QAT devices encounter errors, switch to remaining

available devices by resubmitting the inflight requests, which are responded to with

dummy responses and new requests to the available devices.

¶ If the number of active Intel® QAT devices goes to zero, switch to software and

resubmit the inflight requests which are responded to with dummy responses and

new requests to the software.

¶ If the number of active Intel® QAT devices goes positive again, switch back to

hardware.

Acceleration Drivers Overview

Intel® QuickAssist Technology Software for Linux*

September 2020 Programmer’s Guide – Hardware Version v1.7

Document Number: 336210-014 Intel Confidential 39

Figure 4. Incorporating Dummy Responses in an Intel® QAT Operation

3.20 Rate Limiting

Rate Limiting is implemented by monitoring the utilization of the device on a per-VF,

per-service basis and comparing that to the SLA allocated to that VF and service.

Resources are shared across guests and the resource utilization of each guest is

measured relative to the capacity of the physical function.

The feature is supported only in rate limiting firmware for cryptographic services.

To enable the Rate Limiting feature:

1. Install the driver package on the host with Single-Root Input/Output Virtualization

(SRIOV) enabled.

2. Update the physical function configuration file to set RateLimitingEnabled=1 in

the General section.

3. Set ServicesEnabled to cy or sym or asym.

 Acceleration Drivers Overview

Intel® QuickAssist Technology Software for Linux*

Programmer’s Guide – Hardware Version v1.7 September 2020

40 Intel Confidential Document Number: 336210-014

4. Perform qat_service shutdown and qat_service start .

Note: This procedure also enables Device Utilization measurement (refer to Section 3.21).

Note: Note: When RateLimitingEnabled is defined, internal resources are reallocated to

administrating Rate Limiting/Device Utilization. This reduces performance by 10%.

3.20.1 3.20.1 Service Level Agreement (SLA)

Service Level Agreement enforcement allocates a specified amount of capacity for a

specified service to a specified VF.

Max SLA enforced = (number of VFs) X (number of services) where:

¶ Number of VFs varies based on device type

¶ Number of services = 2 (asymmetric or symmetric cryptographic)

3.20.2 3.20.2 SLA Units

SLA units are measured as follows:

¶ Symmetric Crypto – 1Mbps of reference operation

¶ Asymmetric Crypto – 1 operation (ops) of reference operation

Note: Enforced SLAs are rounded up to the next multiple of 1000 units.

3.20.3 3.20.3 SLA Manager Application

The sla_mgr tool is used to create, update, delete, list and get SLA capabilities.

The SLA Manager executable is available in $ICP_ROOT/build/sla_mgr after the

package is built and installed using ./configure; make install commands.

3.20.3.1 Commands to Fetch Device Utilization

¶ Create SLA:
./sla_mgr create <vf_addr> <rate_in_sla_units> <service>

¶ Update SLA:
./sla_mgr update <pf_addr> <sla_id> <rate_in_sla_units>

¶ Delete SLA: ./sla_mgr delete <pf_addr> <sla_id>

¶ Delete all SLAs: ./sla_mgr delete_all <pf_addr>

¶ Query SLA capabilities: ./sla_mgr caps <pf_addr>

¶ Query list of SLAs: ./sla_mgr list <pf_addr>

Acceleration Drivers Overview

Intel® QuickAssist Technology Software for Linux*

September 2020 Programmer’s Guide – Hardware Version v1.7

Document Number: 336210-014 Intel Confidential 41

Options:

¶ pf_addr Physical address in bus:device.function(xx:xx.x) format

¶ vf_add r Virtual address in bus:device.function(xx:xx.x) format

¶ service Asym(=0) or Sym(=1) cryptographic services

¶ rate_in_sla_units [0-MAX]. MAX is found by querying the capabilities.

1 rate_in_sla_units is equal to:

¶ 1 operation per second – for asymmetric service

¶ 1 Megabits per second – for symmetric service

sla_id Value returned by create command

Note: An SLA is uniquely identified by <pf_addr, sla_id> .

For a given service, device would guarantee minimum rate_in_sla_units

throughput.

Maximum throughput can be up to the maximum capacity of a device.

Note: Throughput measurement may not meet the 90 percent delivery standard when

smaller packet sizes are used.

3.21 DU Manager Application

Device Utilization (DU) is a way to measure utilization of acceleration hardware that

corresponds to the throughput of cryptographic services on a given physical or virtual

function. This can vary between different device types and generations.

The du_mgr tool is used to measure the utilization of cryptographic services for a given

physical or virtual function.

The DU execution tool is available in $ICP_ROOT/build/du_mgr after the package is

built and installed using ./configure; make install commands.

To enable the Device Utilization feature:

1. Install the driver package on the host with SRIOV enabled.

2. Update the physical function configuration file to set RateLimitingEnabled=1 in

the General section.

3. Set ServicesEnabled to cy or sym or asym.

4. Perform qat_service shutdown and qat_service start .

Note: This procedure also enables Rate Limiting (refer to Section 3.20).

 Acceleration Drivers Overview

Intel® QuickAssist Technology Software for Linux*

Programmer’s Guide – Hardware Version v1.7 September 2020

42 Intel Confidential Document Number: 336210-014

3.21.1 Commands to Fetch Device Utilization

Start or Stop the device measurement: ./du_mgr (start / stop) <pf_addr>

Query utilization for Physical function: ./du_mgr query <pf_addr> <service>

Query utilization for Virtual function: ./du_mgr query_vf <pf_addr> <vf_addr>

<service>

Options:

¶ pf_addr Physical address in bus:device.function(xx:xx.x) format

¶ vf_addr Virtual address in bus:device.function(xx:xx.x) format

¶ service Asym(=0) or Sym(=1) cryptographic services

3.21.2 Durations

Duration between start and stop commands should be between 5 to 10 seconds.

Duration of more than 10 seconds may give inconsistent query results.

Device utilization query and query_vf reports utilization between the last start and stop

command.

For a given physical or virtual function, the device utilization reported would be in

relation to the maximum device capacity.

3.21.3 Reference Algorithm

The Symmetric Crypto Algorithm for Intel® QAT 1.7 devices is AES128-CBC HMACSHA1

with Packet size 1024 bytes.

The Symmetric Crypto Algorithm for Intel® QAT 1.6 devices is AES128-CBC

HMACSHA2-256.

The Asymmetric Crypto Algorithm for both systems is RSA with 2048 modulus size.

§

Acceleration Driver Configuration File

Intel® QuickAssist Technology Software for Linux*

September 2020 Programmer’s Guide – Hardware Version v1.7

Document Number: 336210-014 Intel Confidential 43

4.0 Acceleration Driver Configuration File

This chapter describes the configuration file(s) that allows customization of runtime

operation. The configuration file(s) must be tuned to meet the performance needs of

the target application.

Note: The software package includes a default configuration file, which may not provide

optimal performance on all platforms. Consider performance implications as well as the

configuration details provided in this chapter if your system requires modifications to the

default configuration file.

4.1 Configuration File Overview

There is a single configuration file for each Intel® QAT Endpoint (and there may be

multiple Intel® QAT Endpoints on a single Intel® C62x Chipset).

Note: Depending on the model number, a device may also contain no Intel® QAT Endpoints.

The configuration file is split into a number of different sections: A General section and

one or more Logical Instance sections.

The General section includes parameters that allow the user to specify:

¶ Which services are enabled?

¶ Concurrent request default configuration.

¶ Interrupt coalescing configuration (optional).

¶ Statistics gathering configuration.

Additional details are included in Section 4.2, General Section.

Note: The concurrent request parameters include both transmit (Tx) and receive (Rx)

requests.

Logical Instances sections (there may be one or more) include parameters that allow

the user to set:

¶ The number of cryptography or data compression instances being managed.

¶ For each instance, the name of the instance, whether or not polling is enabled, and

the core to which an instance is affinitized.

Additional details are included in Section 4.3, Logical Instances Section.

 Acceleration Driver Configuration File

Intel® QuickAssist Technology Software for Linux*

Programmer’s Guide – Hardware Version v1.7 September 2020

44 Intel Confidential Document Number: 336210-014

A sample configuration file is included in the package in the quickassist/

utilities/adf_ctl/conf_files directory.

4.2 General Section

The general section of the configuration file contains general parameters and statistics

parameters.

4.2.1 General Parameters

The ServicesProfile parameter (see Table 10) defines the services that are

available when the driver loads. For example, if "ServicesProfile =

COMPRESSION" is in the GENERAL section, the compression and decompression are

available, along with service chaining, but not cryptography, device utilization, or rate

limiting.

Table 10. General Default Configuration Parameters

Service DEFAULT CRYPTO COMPRESSION CUSTOM1

Asymmetric Crypto YES YES YES

Symmetric Crypto YES YES YES

MGF KeyGen YES YES

SSL/TLS KeyGen YES YES YES

HKDF YES YES

Compression YES YES YES

Decompression (stateless) YES YES YES

Decompression (stateful)
YES YES

Service Chaining
 YES

Device Utilization
 YES YES

Rate Limiting YES YES

Note: Set the service profile to determine available features.

Table 11describes the other parameters that can be included in the General section.

Acceleration Driver Configuration File

Intel® QuickAssist Technology Software for Linux*

September 2020 Programmer’s Guide – Hardware Version v1.7

Document Number: 336210-014 Intel Confidential 45

Table 11. General Parameters

Parameter Description Default Range

ServicesEnabled

Defines the service(s)
available (cryptographic
[cy], data compression
[dc]).

cy;dc

cy, dc

Note: Multiple values
permitted, use; as the
delimiter.

For exceptions, see

Section 4.3.3.2,

“Increasing the

Maximum Number of

Processes/Instances”.

CyNumConcurrentSymReq
uests

Specifies the number of
cryptographic concurrent
symmetric requests for
cryptographic instances
in general.

512

64, 128, 256, 512,

1024, 2048, 4096, 8192,
16384, 32768, or 65536

CyNumConcurrentAsymReq
uests

Specifies the number of
cryptographic concurrent
asymmetric requests for
cryptographic instances
in general.

64

64, 128, 256, 512,

1024, 2048, 4096, 8192,
16384, 32768, or 65536

DcNumConcurrentRequests

Specifies the number of
data compression
concurrent requests for
data compression
instances in general.

512

64, 128, 256, 512,

1024, 2048, 4096, 8192,
16384, 32768, or 65536

DcIntermediateBufferSizeIn

KB

Specifies the size in KB
of each intermediate
buffer in on-chip
memory for dynamic
compression.

64 32 or 64

AutoResetOnError
Automatically resets the
device in case of fatal
error or heartbeat failure.

0 0 or 1

Note: “Default” denotes the value in the configuration file when shipped or the value used if

not specified in the configuration file.

For all the services enabled, NumConcurrentRequests must be set in the

configuration file to one of the following values: 64, 128, 256, 512, 1024, 2048, 4096,

8192, 16384, 32768 and 65536.

The number of concurrent requests registered by the Intel® QuickAssist driver is set to

NumConcurrentRequests - 2.

 Acceleration Driver Configuration File

Intel® QuickAssist Technology Software for Linux*

Programmer’s Guide – Hardware Version v1.7 September 2020

46 Intel Confidential Document Number: 336210-014

This implementation guarantees that the request ring will never be full and avoids the

need for a Memory Mapped IO (MMIO) read. This implementation maximizes

throughput performance.

4.3 Logical Instances Section

This section allows the configuration of logical instances in each address domain

(kernel space and individual user space processes).

The address domains are in the following format:

¶ For the kernel address domain: [KERNEL] targeted to Linux* Kernel Crypto

Framework (LKCF)

¶ For the Intel® QuickAssist API in Kernel address domain [KERNEL_QAT]

¶ For user process address domains: [xxxxx] , where xxxxx may be any ASCII value

that uniquely identifies the user mode process.

In user space, to allow the driver to configure the logical instances associated with a

user process correctly, the process must call the function icp_sal_userStart

passing the xxxxx string during process initialization. When the user space process is

finished, it must call the function icp_sal_userStop to free resources. Refer to

Section 5.2.4, User Space Access Configuration Functions for more information.

A single VF configured for the SR-IOV use case cannot have both user space instances

and kernel space instances. Separate VFs must be created for user space and kernel

space.

The NumProcesses parameter (in the User Process section) indicates the max number

of user space processes within that section name with access to instances on this

device. Refer to Section 5.2.4.2, icp_sal_userStop for more information.

The items that can be configured for a logical instance are:

¶ The name of the logical instance

¶ The polling mode

¶ The core to which the instance is affinitized (optional)

4.3.1 [KERNEL] Section

In the [KERNEL] section of the configuration file, information about the number and

type of kernel instances can be defined.

Table 12 describes the parameters that determine the number of kernel instances for

each service.

Acceleration Driver Configuration File

Intel® QuickAssist Technology Software for Linux*

September 2020 Programmer’s Guide – Hardware Version v1.7

Document Number: 336210-014 Intel Confidential 47

Note: The maximum number of cryptographic instances supported per Intel® QAT Endpoint is

32; for exceptions, refer to Section 4.3.3.2, Increasing the Maximum Number of

Processes/Instances.

Note: The NumberDcInstances is ignored in this section and is set to 0.

Table 12. [KERNEL] Section Parameters

Parameter Description Default Range

NumberCyInstances

Specifies the number of

cryptographic instances.

Note: Depends on the number

of allocations to other services.

0 0 to 32

4.3.2 [KERNEL_QAT] Section

The [KERNEL_QAT] section defines instances that can be used by the Intel®

QuickAssist API in Kernel space domain.

This section is different from the [KERNEL] section. The [KERNEL] section in the

configuration file defines instances to register Intel® QuickAssist Acceleration with

Linux* Kernel Crypto Framework (LKCF) whilst the instances defined in the

[KERNEL_QAT] section are exclusively targeted to be used with the Intel® QuickAssist

API.

Table 13 describes the parameters that determine the number of kernel instances for

each service.

Note: The maximum number of cryptographic and data compression instances supported is

32 per Intel® QAT Endpoint; for exceptions, refer to Section 4.3.3.2, Increasing the Maximum

Number of Processes/Instances.

Note: Table 13 describes the parameters that can be included in the [GENERAL] section.

Table 13. [KERNEL_QAT] Section Parameters

Parameter Description Default Range

NumberCyInstances

Specifies the number of
cryptographic instances.

Note: Depends on the number
of allocations to other services.

6 0 to 32

NumberDcInstances

Specifies the number of Data
Compression instances.

Note: Depends on the number
of allocations to other services.

2 0 to 32

 Acceleration Driver Configuration File

Intel® QuickAssist Technology Software for Linux*

Programmer’s Guide – Hardware Version v1.7 September 2020

48 Intel Confidential Document Number: 336210-014

Note:
1. NumberCyInstances depends on the number of allocations to other services

2. “Default” denotes the value in the configuration file when shipped.

4.3.3 User Process [xxxxx] Sections

There is one [xxxxx] section of the configuration file for each Intel® QAT Endpoint to

be configured.

Note: Check the SKU information for your specific device to determine how many Intel® QAT

Endpoints the device contains. There can be up to three Intel® QAT Endpoints per device.

In each [xxxxx] section of the configuration file, user space access to the Intel® QAT

Endpoint can be configured.

Table 14 shows the parameters in the configuration file that can be set for user process

[xxxxx] sections.

Parameters for each user process instance can also be defined. The parameters that

can be included for each specific user process instance are similar to those in Section

4.3, Logical Instances Section.

Table 14. [KERNEL_QAT] Section Parameters

Parameter Description Default Range

NumProcesses

The number of user space
processes with section name
[xxxxx] that have access to this
device.

The maximum number of
processes that can call
icp_sal_userStart and be active
at any one time. Refer to Section
5.2.4.1, “icp_sal_userStart” for
more information.

Caution: Resources are
preallocated. If this parameter
value is set too high, the driver
fails to load.

1

For constraints, see

Section 4.3.3.1 Maximum
Number of Process
Calculations.

For exceptions, see

Section 4.3.3.2, Increasing
the Maximum Number of
Processes/Instances.

Acceleration Driver Configuration File

Intel® QuickAssist Technology Software for Linux*

September 2020 Programmer’s Guide – Hardware Version v1.7

Document Number: 336210-014 Intel Confidential 49

Parameter Description Default Range

LimitDevAccess

Indicates if the user space
processes in this section are
limited to only access instances
on this Intel® QAT Endpoint.

0

0 (disabled, processes in
this section can access
multiple Intel® QAT
Endpoints) or 1 (enabled,
processes in this section
can only access this Intel®
QAT Endpoint). For
additional information, see

Section 4.5 Configuring
Multiple Processes on a
System with Multiple Intel®
QAT Endpoints.

NumberCyInstances

Specifies the number of
cryptographic instances.

Note: Depends on the number
of allocations to other services.

6

0 to 32. For exceptions,
see Section 4.3.3.2,
Increasing the Maximum
Number of
Processes/Instances.

NumberDcInstances

Specifies the number of data
compression instances.

Note: Depends on the number
of allocations to other services.

2 0 to 32

4.3.3.1 Maximum Number of Process Calculations

The NumProcesses parameter is the number of user space processes per service

within the [xxxx] section domain with access to this Intel® QAT Endpoint.

The value to which this parameter can be set is determined by a number of factors,

most significantly, the number of cryptography instances and/or data compression

instances in the process section. The total number of processes, per service, created by

the driver is given by the expression (e.g., for cryptography):

(NumProcesses) x (NumberCyInstances)

In Intel® QAT 1.7 devices, there are 16 ring banks per Intel® QAT Endpoint and a

maximum of two cryptography instances and two compression instances per bank. The

maximum number of instances per device is 32 for cryptography and 32 for

compression. For exceptions, refer to Section 4.3.3.2, Increasing the Maximum Number

of Processes/Instances.

The following code example illustrates the maximum number of possible processes per

device in polling mode:
NumProcesses = 32

NumCyInstances = 1

 Acceleration Driver Configuration File

Intel® QuickAssist Technology Software for Linux*

Programmer’s Guide – Hardware Version v1.7 September 2020

50 Intel Confidential Document Number: 336210-014

NumDcInstances = 1

4.3.3.2 Increasing the Maximum Number of Processes/Instances

Note:
1. One bank is used per Intel® QAT virtual function (VF).

2. This section only applies when the instances make use of polled mode.

Under certain circumstances, it is possible to increase the number of processes

supported by the software. In IIntel® QAT 1.7 devices, there are 16 ring banks per Intel®

QAT Endpoint and a maximum of two cryptography instances and two compression

instances per bank (or per VF) when the configuration file has

ServicesEnabled equal to cy;dc . However, the maximum number of instances can

be increased with the careful selection of the ServiceEnabled parameter.

Compression, symmetric cryptography, and asymmetric cryptography each require two

rings out of the 16 possible rings for a ring bank. By selecting only, the services needed,

the number of instances can be increased.

Note: Not all versions of the Intel® QAT software package support the ability to increase the

number of processes.

Here are the variations:

¶ With ServicesEnabled equal to sym, only two rings are used for each instance, so

eight instances can be used per bank (or per VF), or 128 instances per Intel® QAT

Endpoint. In this case, compression and asymmetric crypto services will not be

available.

¶ With ServicesEnabled equal to asym, only two rings are used for each instance, so

eight instances can be used per bank (or per VF), or 128 instances per Intel® QAT

Endpoint. In this case, compression and symmetric crypto services will not be

available.

¶ With ServicesEnabled equal to cy , only four rings are used for each instance (two

each for asymmetric and symmetric crypto), so four instances can be used per bank

(or per VF), or 64 instances per Intel® QAT Endpoint. In this case, compression

services will not be available.

¶ With ServicesEnabled equal to dc , only two rings are used for each instance, so

eight instances can be used per bank (or per VF), or 128 instances per Intel® QAT

Endpoint. In this case, asymmetric and symmetric crypto services will not be

available.

¶ With ServicesEnabled equal to dc;asym , only four rings are used for each

instance (two each for compression and asymmetric crypto), so four instances can be

Acceleration Driver Configuration File

Intel® QuickAssist Technology Software for Linux*

September 2020 Programmer’s Guide – Hardware Version v1.7

Document Number: 336210-014 Intel Confidential 51

used per bank (or per VF), or 64 instances per Intel® QAT Endpoint. In this case,

symmetric crypto services will not be available.

¶ With ServicesEnabled equal to dc;sym , only four rings are used for each instance

(two each for compression and symmetric crypto), so four instances can be used per

bank (or per VF), or 64 instances per Intel® QAT Endpoint. In this case, asymmetric

crypto services will not be available.

4.3.3.3 Configuring Instances for Virtual Functions

To configure the number of instances for a virtual function:

1. Install the driver package on the host with SR-IOV enabled.

2. Update the physical function configuration file to set ServicesEn abled (refer to

Section 4.3.3.2)

3. Perform qat_service shutdown and qat_service start .

4. Update the virtual function configuration file to set ServicesEnabled (refer to

Section 4.3.3.2, Increasing the Maximum Number of Processes/Instances.)

5. Restart qat_service .

The value of ServicesEnabled in the VF configuration file should be the same as the

value of ServicesEnabled in the PF configuration file, or a subset of that value as

shown in Table 15. For instance, if a PF is configured as cy , allowable VF configurations

related to that PF can only be cy , asym, or sym. VF device restart will fail if a VF

configuration is not allowed for that related PF.

If a VF service is configured to a subset of PF service, the number of VF instances is

limited to the number allowed for that PF service as described in Section 4.3.3.2,

Increasing the Maximum Number of Processes/Instances. For example, if the PF

configuration file has ServicesEnabled=dc;asym , only four (not eight) dc instances

are enabled if the VF is configured for dc only.

Table 15. Configuring Physical Functions and Virtual Functions

Configured PF Service Available VF Services

cy;dc cy;dc

cy

dc

sym

asym

dc;sym

dc;asym

 Acceleration Driver Configuration File

Intel® QuickAssist Technology Software for Linux*

Programmer’s Guide – Hardware Version v1.7 September 2020

52 Intel Confidential Document Number: 336210-014

Configured PF Service Available VF Services

cy cy

sym

asym

dc;asym dc;asym

asym

dc

dc;sym dc;sym

sym

dc

asym asym

sym sym

dc dc

4.3.4 Cryptographic Logical Instance Parameters

The following table shows the parameters that can be set for cryptographic logical

instances.

Table 16. Cryptographic Logical Instance Parameters

Parameter Description Default Range

CyXName
Specifies the name of
cryptographic instance
number X.

IPSec0 for

KERNEL and
KERNEL_QAT
sections.

SSL0 for user
section

String (max. 64
characters)

CyXIsPolled

Specifies if cryptographic
instance number x works in
poll mode, interrupt mode or
epoll mode.

0 for kernel
space instances
1 for user space
instance

0 (interrupt mode) for
instances in the KERNEL
and KERNEL_QAT
sections 1 (poll mode) for
instances in the
KERNEL_QAT and user
space sections 2 (epoll
mode eventbased polling
mode) for instances in
user space section

Acceleration Driver Configuration File

Intel® QuickAssist Technology Software for Linux*

September 2020 Programmer’s Guide – Hardware Version v1.7

Document Number: 336210-014 Intel Confidential 53

CyXCoreAffinity
Specifies the core to which
the instance should be
affinitized.

Varies
depending on
the value of X.

0 to max. number of
cores in the system

Note: “Default” denotes the value in the configuration file when shipped.

4.3.5 Data Compression Logical Instance Parameters

Table 17shows the parameters in the configuration file that can be set for data

compression logical instances.

Note: The maximum number of data compression instances supported is 64.

Table 17. Data Compression Logical Instance Parameters

Parameter Description Default Range

DcXName
Specifies the name of data
compression instance number
X.

IPComp0
String (max. 64
characters)

DcXIsPolled

Specifies if data compression
instance number x works in poll
mode, interrupt mode or epoll
mode.

0 for kernel
space
instances

for user
space
instances

0 (interrupt mode)

for instances in the

KERNEL and

KERNEL_QAT

sections 1 (poll

mode) for instances

in the KERNEL_QAT

and user space

sections 2 (epoll

mode eventbased

polling mode) for

instances in user

space section

DcXCoreAffinity

Specifies the core to which the
data compression instance
should be affinitized.

Varies
depending
on the
value of X.

0 to max. number
of cores in the
system

Note: “Default” denotes the value in the configuration file when shipped.

4.3.6 Setting the Core Affinity Parameter for a Logical Instance

When instances are configured with IsPolled = 1 (Polling mode), the parameter

CoreAffinity does not have any impact.

 Acceleration Driver Configuration File

Intel® QuickAssist Technology Software for Linux*

Programmer’s Guide – Hardware Version v1.7 September 2020

54 Intel Confidential Document Number: 336210-014

Although not used, it is a valid parameter and applications can query the value using

cpaCyInstanceGetInfo2 (see coreAffinity bitmask in CpaInstanceInfo2). For

example, the sample code affinitizes the thread that uses an instance to the core

indicated in CoreAffinity the config file for that instance.

For instances configured in Interrupt Mode (IsPolled = 2 in user space (Epoll) and

IsPolled = 1 in kernel space), the value of CoreAffinity is used to affinitize the

interrupt handler to that core.

4.4 Configuring Multiple Intel® QuickAssist Technology
Endpoints in a System

A platform may include more than one Intel® QAT Endpoint. Each device must have its

own configuration file. The format and structure of the configuration file is exactly the

same for all devices. Consequently, the configuration file for Intel® QAT Endpoint 0,

(c6xx_dev0.conf , for the Intel® C62x Chipset; c3xxx_dev0.conf , for the Intel Atom®

C3000 Processor Family SoC; d15xx_dev 0.conf , for the Intel® Xeon® Processor D

Family), can be cloned for use with other Intel® QAT Endpoints.

All the configuration files are located in the /etc folder following the installation of the

Intel® QuickAssist package.

Simply make a copy of the file and rename it by changing the dev0 part of the file

name. For example, for a second Intel® C62x Chipset Intel® QAT Endpoint, change the

file name to c6xx_dev1.conf ; for a third Intel® QAT Endpoint, change the Intel® QAT

Intel® QAT Endpoint by editing the corresponding configuration file accordingly.

Note: Note: If a configuration file does not exist for an Intel® QAT Endpoint, that endpoint

will not start, and an error is displayed indicating that a configuration file was not found.

To determine the number of IIntel® QAT Endpoints in a system, use the lspci utility:
lspci - nn | egrep - e '8086:37c8|8086:19e2|8086:0435|8086:6f54'

The output from a system with a high-end Intel® C62x Chipset SKU is similar to the

following:
88:00.0 Co - pr ocessor [0b40]: Intel Corporation Device [8086:37c8]

(rev 03)

8a:00.0 Co - processor [0b40]: Intel Corporation Device [8086:37c8]

(rev 03)

8c:00.0 Co - processor [0b40]: Intel Corporation Device [8086:37c8]

(rev 03)

Then, after the driver is loaded, the user can use the qat_service script to determine

the name of each Intel® QAT Endpoint and its status. For example:
service qat_service status

Acceleration Driver Configuration File

Intel® QuickAssist Technology Software for Linux*

September 2020 Programmer’s Guide – Hardware Version v1.7

Document Number: 336210-014 Intel Confidential 55

qat_dev0 - type: c6xx, inst_id: 0, bsf: 06:00:0, #accel: 5

#engines: 10 st ate: up qat_dev1 - type: c6xx, inst_id: 1, bsf:

85:00:0, #accel: 5 #engines: 10 state: up qat_dev2 - type: c6xx,

inst_id: 2, bsf: 87:00:0, #accel: 5 #engines: 10 state: up

The qat_service can start, stop, restart and shutdown each device separately or all

Intel® QAT Endpoints together. Refer to Section 3.6, Managing Intel QuickAssist

Technology Endpoints Using qat_service for more information.

Some important configuration file information when using multiple Intel® QAT

Endpoints:

¶ When specifying kernel and user space instances in the configuration file, the Cy<

Number>Name and Dc<Number>Name parameters must be unique in the context of

the section name only. For example, it is valid to have a parameter called Cy0Name in

both a kernel instance section (if supported) and a user instance section in the same

configuration file without issue. Also, the parameter names do not need to be unique

at a system-wide level. For example, it is valid to have a parameter called Cy0Name in

both the configuration file for dev0 and the configuration file for dev1 without issue.

¶ For Intel® QAT Endpoints with configuration files that have the same section name

(for example, [SSL] and the same data in that section), it is necessary to use the

cpaCyInstanceGetInfo2() function to distinguish between Intel® QAT Endpoints.

The cpaCyInstanceGetInfo2() allows the user of the API to query which Intel®

QAT Endpoint a cryptography instance handle belongs to. In addition, for any

application domain defined in the configuration files (e.g., [SSL]), a call to

cpaCyGetNumInstances() returns the number of cryptography instances defined

for that domain across all configuration files. A subsequent call to

cpaCyGetInstances() obtains these instance handles.

4.5 Configuring Multiple Processes on a System with Multiple
Intel® QAT Endpoints

As an example, consider a system with two Intel® QAT Endpoints where it is necessary

to configure two user space sections. One section is identified as SSL and the other is

identified as Internet Protocol Security (IPSec) .

¶ For the SSL section, configure eight processes, where each process has access to one

acceleration instance.

¶ For the IPSec section, configure one process, with access to eight acceleration

instances, four per Intel® QAT Endpoint.

In this scenario, the user space section of the configuration files would look like the

following.

For /etc/c6xx_dev0.conf :

[SSL] #User space section name

 Acceleration Driver Configuration File

Intel® QuickAssist Technology Software for Linux*

Programmer’s Guide – Hardware Version v1.7 September 2020

56 Intel Confidential Document Number: 336210-014

NumProcesses=4 # There are 4 user space process with section name SSL with access

to this device

LimitDevAccess=1 # These 4 SSL user space processes only use this device

NumCyInstances=1 # Each process has access to 1 Cy instance on this device

NumDcInstances=0 # Each process has access to 0 Dc instances on this device

Crypto - User instance #0

Cy0Name = "SSL0"

Cy0IsPolled = 1

Cy0CoreAffinity = 0 # Core affinity not used for polled instance

[IPsec] #User space section name

NumProcesses=1 # There is 1 user space process with section name IPSec with

access to this device

LimitDevAccess=0 # This IPSec user space process may have access to other

devices

NumCyInstances=4 # The IPSec process has access to 4 Cy instances on this device

NumDcInstances=0 # The IPSec process has access to 0 Dc instances on this device

Crypto - User instance #0

Cy0Name = "IPSec0"

Cy0IsPolled = 1

Cy0CoreAffinity = 0 # Core affinity not used for polled instance

Crypto - User instance #1

Cy1Name = "I PSec1"

Cy1IsPolled = 1

Cy1CoreAffinity = 0 # Core affinity not used for polled instance

Crypto - User instance #2

Cy2Name = "IPSec2"

Cy2IsPolled = 1

Cy2CoreAffinity = 0 # Core affinity not used for polled instance

Crypto - User instance #3

Cy3Name = "IPSec3"

Cy3IsPolled = 1

Cy3CoreAffinity = 0 # Core affinity not used for polled instance
For /etc/c6xx_dev1.conf:

[SSL] #User space section name

NumProcesses=4 # There are 4 user space process with section name SSL with access

to this device

LimitDevAccess=1 # These 4 SSL user space processes only use this device

NumCyInstances=1 # Each process has access to 1 Cy instance on this device

NumDcInstances=0 # Each process has access to 0 Dc instances on this device

Acceleration Driver Configuration File

Intel® QuickAssist Technology Software for Linux*

September 2020 Programmer’s Guide – Hardware Version v1.7

Document Number: 336210-014 Intel Confidential 57

Crypto - User instance #0

Cy0Name = "SSL0"

Cy0IsPolled = 1

Cy0CoreAffinity = 0 # Core affinity not used for polled instance

[IPsec] #User space section name

NumProcesses=1 # There is 1 user space process with section name IPSec with

access to this device

LimitDevAccess =0 # This IPSec user space process may have access to other

devices

NumCyInstances=4 # The IPSec process has access to 4 Cy instances on this device

NumDcInstances=0 # The IPSec process has access to 0 Dc instances on this device

Crypto - User instance #0

Cy0Name = "IPSec0"

Cy0IsPolled = 1

Cy0CoreAffinity = 0 # Core affinity not used for polled instance

Crypto - User instance #1

Cy1Name = "IPSec1"

Cy1IsPolled = 1

Cy1CoreAffinity = 0 # Core affinity not used for polled instance

Crypto - User instance #2

Cy2Name = "IPSec2"

Cy2IsPolled = 1

Cy2CoreAffinity = 0 # Core affinity not used for polled instance

Crypto - User instance #3

Cy3Name = "IPSec3"

Cy3IsPolled = 1

Cy3CoreAffinity = 0 # Core affinity not used for polled instance

Eight processes (with section name SSL) can call the icp_sal_userStart ("SSL")

function to get access to one crypto instance each. One process (with section name

IPSec) can call the icp_sal_userStart("IPSec") function to get access to eight

crypto instances.

Internally in the driver, this works as follows:

1. When the driver is configured (that is, the service qat_service is called), the

driver reads the configuration file for the device and populates an internal

configuration table.

2. Reading the configuration file for dev0 :

 Acceleration Driver Configuration File

Intel® QuickAssist Technology Software for Linux*

Programmer’s Guide – Hardware Version v1.7 September 2020

58 Intel Confidential Document Number: 336210-014

a. For the section named [SSL] , the driver determines that four processes are

required and that these processes limit access to this device only. In this case,

the driver creates four internal sections that it labels SSL_DEV0_INT_0 ,

SSL_DEV0_INT_1 , SSL_DEV0_INT_2 and SSL_DEV0_INT_3 . Each section is

given access to one crypto instance as described.

b. For section name [IPSec] , the driver determines that one process is

required and that this process does not limit access to this device only (that is,

it may access instances on other devices). In this case, the driver creates one

internal section that it labels IPSec_INT_0 and gives this access to four

crypto instances on this device.

3. Reading the configuration file for dev1 :

a. For the section named [SSL], the driver determines that four processes are

required and that these processes are limited to access this device only. In this

case, the driver creates four internal sections that it labels SSL_DEV1_INT_0,

SSL_DEV1_INT_1, SSL_DEV1_INT_2 and SSL_DEV1_INT_3. Each section is

given access to one crypto instance as described.

b. For the section named [IPSec], the driver determines that one process is

required and that this process may have access to instances on other devices.

In this case, the driver creates one internal section that it labels IPSec_INT_0

and gives this access to four crypto instances on this device.

Note: This section name now appears in both devices' internal configuration and, therefore,

the process that gets assigned this section name will have access to instances on both devices.

4. I n total, there are nine separate sections (SSL_DEV0_INT_0, SL_DEV0_INT_1,

SSL_DEV0_INT_2, SSL _DEV0_INT_3, SSL_DEV1_INT_0, SL_DEV1_INT_1,

SSL_DEV1_INT_2 , SSL_DEV1_INT_3 and IPSec_INT_0) with access to crypto

instances.

When a process calls the icp_sal_userStart ("SSL") function, the driver locates

the next available section of the form SSL_DEV<m>_INT<....> (of which there are

eight in total in this example) and assigns this section to the process. This gives the

process access to corresponding crypto instances.

When a process calls the icp_sal_userStart ("IPSec") function, the driver

locates the next available section of the form IPSec_INT_<....> (of which there is

only one in total for this example) and assigns this section to the process. This gives the

process access to the corresponding crypto instances.

The i cp_sal_userStartMultiProcess() function has been deprecated. The API

still exists, but it simply calls icp_sal_userStart() .

Acceleration Driver Configuration File

Intel® QuickAssist Technology Software for Linux*

September 2020 Programmer’s Guide – Hardware Version v1.7

Document Number: 336210-014 Intel Confidential 59

4.6 Sample Configuration File

Sample configuration files are available in

quickassist/utilities/adf_ctl/conf_files. Depending on the product and

configuration, one or more of these will be copied to /etc during the package

installation.

Note: The previous "v1" configuration file format is not supported.

§

 Supported APIs

Intel® QuickAssist Technology Software for Linux*

Programmer’s Guide – Hardware Version v1.7 September 2020

60 Intel Confidential Document Number: 336210-014

5.0 Supported APIs

The supported APIs are described in two categories:

¶ Intel QuickAssist Technology APIs

¶ Additional APIs

5.1 Intel QuickAssist Technology APIs

The platforms described in this manual support the following Intel® QAT API libraries:

¶ Cryptographic - API definitions are located in: $ICP_ROOT/quickassist/

include/lac , where $ICP_ROOT is the directory where the Acceleration software is

unpacked. See the Intel QuickAssist Technology Cryptographic API Reference

Manual (refer to Table 2) for details.

¶ Data Compression - API definitions are located in: $ICP_ROOT/quickassist/

include/dc . See the Intel ® QuickAssist Technology Data Compression API

Reference Manual (refer to Table 2) for details.

Base API definitions that are common to the API libraries are located in: $ICP_ROOT/

quickassist/include . See also the Intel QuickAssist Technology API

Programmerôs Guide (refer to Table 2) for guidelines and examples that demonstrate

how to use the APIs.

5.1.1 Intel® QAT API Limitations

The following limitations apply when using the Intel® QAT APIs on the platforms

described in this manual:

¶ For all services, the maximum size of a single perform request is 4 GB.

¶ For all services, data structures that contain data required by the Intel® QAT Endpoint

should be on a 64-byte-aligned address to maximize performance. This alignment

helps minimize latency when transferring data from DRAM to an Intel® QAT Endpoint

integrated in the PCH device.

¶ For the key generation cryptographic API, the following limitations apply:

- Secure Sockets Layer (SSL) key generation op-data:

Maximum secret length is 512 bytes

Maximum userLabel length is 136 bytes

Maximum generatedKeyLenInBytes is 248

- Transport Layer Security (TLS) key generation op-data

Secret length must be <128 bytes for TLS v1.0/1.1; <512 bytes for TLS v1.2

userLabel length must be <256 bytes

Supported APIs

Intel® QuickAssist Technology Software for Linux*

September 2020 Programmer’s Guide – Hardware Version v1.7

Document Number: 336210-014 Intel Confidential 61

Maximum seed size is 64 bytes

Maximum generatedKeyLenInBytes is 248 bytes

- Mask Generation Function (MGF) op-data

Maximum seed length is 255 bytes

Maximum maskLenInBytes is 65528

¶ For the cryptographic service, SNOW 3G and KASUMI* operations are not supported

when CpaCySymPacketType is set to CPA_CY_SYM_PACKET_TYPE_PARTIAL. The

error returned in this case is CPA_STATUS_INVALID_PARAM.

¶ For the cryptographic service, when using the asymmetric crypto APIs, the buffer size

passed to the API should be rounded to the next power of 2, or the next 3- times a

power of 2, for optimum performance.

¶ For the data compression service, the size of all stateful decompression requests

have to be a multiple of two with the exception of the last request.

¶ For the data compression service, the CpaDcFileType field in the

CpaDcSessionSetupData data structure is ignored (previously this was considered

for semi-dynamic compression/decompression).

¶ For static compression, the maximum expansion during compression is ceiling

(9*Total_Input_Byte/8)+7 bytes. If

CPA_DC_ASB_UNCOMP_STATIC_DYNAMIC_WITH_STORED_HDRS or

CPA_DC_ASB_UNCOMP_STATIC_DYNAMIC_WITH_NO_HDRS is selected, the

maximum expansion during compression is the input buffer size plus up to ceiling

(Total_Input_Byte/65535) * 5 bytes, depending on whether the stored headers are

selected.

Note: Due to the need for a skid pad and the way the checksum is calculated in the stored

block case to prevent compression overflow, an output buffer size of ceiling

(9*Total_Input_Byte/8) + 55 bytes needs to be supplied (even though the stored block output

size might be less).

¶ The decompression service can report various error conditions, most of which arise

from processing dynamic Huffman code trees that are ill-formed. These soft error

conditions are reported at the Intel® QuickAssist Technology API using the

CpaDcReqStatus enumeration. At the point of soft error, the hardware state will not

be accurate to allow recovery. Therefore, in this case, the Intel® QuickAssist

Technology software rolls back to the previous known good state and reports that no

input has been processed and no output produced. This allows an application to

correct the source of the error and resubmit the request.

For example, if the following source and destination buffers were submitted to the

Intel® QuickAssist Technology:

 Supported APIs

Intel® QuickAssist Technology Software for Linux*

Programmer’s Guide – Hardware Version v1.7 September 2020

62 Intel Confidential Document Number: 336210-014

The result would be:

¶ Behavior when build flag ICP_DC_RETURN_COUNTERS_ON_ERROR is defined.In

some specialized applications, when a decompression soft error occurs, the

application has no way of correcting the source of the error and resubmitting the

request. The session will need to be invalidated and terminated. In this case it is more

useful to the application to output the uncompressed data up to the point of soft

error before terminating the session.There is a compile time build flag

(ICP_DC_RETURN_COUNTERS_ON_ERROR) to select this mode of operation. This is

the behavior of decompression in case of soft error when this build flag is used.

If the following source and destination buffers were submitted to the Intel®

QuickAssist Technology API:

The result would be:

Supported APIs

Intel® QuickAssist Technology Software for Linux*

September 2020 Programmer’s Guide – Hardware Version v1.7

Document Number: 336210-014 Intel Confidential 63

It is important to note in this case:

- The consumed value returned in the CpaDcRqResults structure is not

reliable.

- No further requests can be submitted on this session.

¶ For stateful decompression, the maximum output size is 4.29 GB (232 bytes).

5.1.1.1 Resubmitting After Getting an Overflow Error

Table 18 describes the behavior of the Intel® QAT compression service when an

overflow occurs during a compression or decompression operation.

It describes the expected behavior of an application when an overflow occurs.

Table 18. Compression/Decompression Overflow Behavior

Operation Overflow
supported

Input data
consumed

?

Valid
Data

Produced
?

Status

Returned
in Results

Note

Traditiona
l API

Stateless
compression

YES

Possible -
indicated in

results

consumed
field

Possible -
indicated
in results

produced
field

-11

Overflow
is
considere
d as an
exception

Stateless
decompression

NO NO NO -11

Overflow
is
considere
d as an
error

Stateful
decompression

YES

Possible -
indicated in

results

consumed
field

Possible -
indicated
in results

produced
field

-11

Overflow
is
considere
d as an
exception

Data Plane
API

Stateless
compression

NO NO NO -11

Overflow
is
considere
d as an
error

Stateful
decompression

NO NO NO -11

Overflow
is
considere
d as an
error

The Intel QuickAssist releases enable the Compress and Verify feature by default for

compression requests. The Compress and Verify feature implies that sessions can only

be Stateless in the compression direction.

 Supported APIs

Intel® QuickAssist Technology Software for Linux*

Programmer’s Guide – Hardware Version v1.7 September 2020

64 Intel Confidential Document Number: 336210-014

5.1.1.1.1 Overflow error in the Traditional API

Stateless sessions support overflow as an exception for traditional API in the

compression direction only. This means that the application can rely on the

cpaDcRqResults.consumed to resubmit from where the overflow occurred.

An overflow in the decompression direction must be treated as an error. In this case,

the application must resubmit the request with a larger buffer as described in the

procedure for handling overflow errors.

For stateful sessions, overflow is supported only in the decompression direction.

5.1.1.1.2 Overflow error in the Data Plane API

The Data Plane API considers overflow status as an error. If an overflow occurs with the

data plane API, the driver will output the following error message to the user:

"Unrecoverable error: stateless overflow. You may need to

increase the size of your destination buffer"

In this case, cpaDcRqResults.consumed, .produced and.checksum should be

ignored. If length and checksum are required, they must be tracked in the application,

because they are not maintained in the session.

5.1.1.1.3 Procedure for handling overflow errors

Resubmit the request with the following data:

¶ Use the same Source buffer.

¶ Allocate a bigger Destination buffer.

¶ Put the checksum from the previous successful request into the cpaDcRqResults

struct.

5.1.1.1.4 Compression Overflow support in a Virtualized environment

In a virtual environment, the guest does not download the firmware. Only the host

downloads the firmware.

As a consequence, if the guest runs a newer Intel® QAT driver than the host, the guest

application might experience false CNV errors. The correct course of action would be to

update the host with the latest Intel® QAT driver.

5.1.1.2 Dynamic Compression for Data Compression Service

Dynamic compression involves feeding the data produced by the compression

hardware block to the translator hardware block. Figure 5 shows the dynamic

compression data path.

Supported APIs

Intel® QuickAssist Technology Software for Linux*

September 2020 Programmer’s Guide – Hardware Version v1.7

Document Number: 336210-014 Intel Confidential 65

Figure 5. Dynamic Compression Data Path

When the application selects the Huffman type to CPA_DC_HT_FULL_DYNAMIC in the

session and auto-select best feature is set to CPA_DC_ASB_DISABLED, the

compression service may not always produce a deflate stream with dynamic Huffman

trees.

In the case of Stateful decompression requests, if the service returns an exception (e.g.

overflow status in the results), it is recommended to examine the bytes consumed and

returned in the CpaDcRqResults structure to verify if all the data in the source data

buffer has been processed. Unprocessed data can be submitted in a subsequent

request that uses the offset reported by the consumed field in the CpaDcRqResults

structure.

5.1.1.3 Maximal Expansion with Auto Select Best Feature for Compression

Some input data may lead to a lower than expected compression ratio. This is because

the input data may not be very compressible. To achieve a maximum compression

ratio, the acceleration unit provides an auto select best (ASB) feature. In this mode, the

Intel® QuickAssist Technology hardware will first execute static compression followed

by dynamic compression and then select the output that yields the best compression

ratio. To use the ASB feature, configure the autoSelectBestHuffmanTree enum

during the session creation.

Regardless of the ASB setting selected, dynamic compression will only be attempted if

the session is configured for dynamic compression.

There are four possible settings available for the autoSelectBestHuffmanTree

when creating a session. Based on the ASB settings described below, the produced

data returned in the CpaDcRqResults structure will vary:

5.1.1.3.1 CPA_DC_ASB_DISABLED

ASB mode is disabled.

5.1.1.3.2 CPA_DC_ASB_STATIC_DYNAMIC

This setting is deprecated. Selecting CPA_DC_ASB_STATIC DYNAMIC has the same

 Supported APIs

Intel® QuickAssist Technology Software for Linux*

Programmer’s Guide – Hardware Version v1.7 September 2020

66 Intel Confidential Document Number: 336210-014

effect as selecting CPA_DC_ASB_UCNCOMP_STATIC_DYNAMIC_WITH_STORED_HDRS

(refer to Section 5.1.1.3.3.)

5.1.1.3.3 CPA_DC_ASB_UNCOMP_STATIC_DYNAMIC_WITH_STORED_HDRS

Both a dynamic and a static compression operation are performed. However, if the

produced data both for the dynamic and static operations return a greater value than

the uncompressed source data and source block headers, the source data will be used

as a stored block. With this ASB setting, a 5-byte stored block header is perpended to

the stored block.

The worst-case produced data can be estimated to:

Produced data in bytes = Total input bytes + ceil (Total input

bytes / 65535) * 5

For example, for an input source size of 111261 bytes, the worst-case produced data

will be:
Produced data = 111261 + ceil (111261 / 65535) * 5

= 111261 + ceil (1.698) * 5

= 111261 + 2 * 5

Produced data = 111271 bytes

5.1.1.3.4 CPA_DC_ASB_UNCOMP_STATIC_DYNAMIC_WITH_NO_HDRS

Note: The static test for this ASB setting has been deprecated.

With this ASB setting, if the produced data for the dynamic operation returns a greater

value than the uncompressed source data, the uncompressed source data will be sent

to the destination buffer though DMA transfer. This is the same behavior as with the

ASB setting CPA_DC_ASB_UNCOMP_STATIC_DYNAMIC_WITH_STORED_HDRS except

the stored block deflate headers are not perpended to the stored block. The produced

data can be estimated via the following:

Produced data in bytes = Min(Dynamic, Uncompressed)

5.1.1.4 Maximal Expansion and Destination Buffer Size

For static compression operations, the worst-case possible expansion can be expressed

as:

Max Static Produced data in bytes = ceil(9 * Total input bytes /

8) + 7

The memory requirement for the destination buffer is expressed by the following

formula:

Supported APIs

Intel® QuickAssist Technology Software for Linux*

September 2020 Programmer’s Guide – Hardware Version v1.7

Document Number: 336210-014 Intel Confidential 67

Destination buffer size in bytes = ceil(9 * T otal input bytes /

8) + 55 bytes

The destination buffer size must take into account the worst-case possible maximal

expansion + 55 bytes; e.g., for an input source size of 111261 bytes, the worst-case

produced data will be:
Static Produced data = ceil(9 * 111261 / 8) + 7

= ceil (125168.625) + 7

= 125169 + 7

Worst case Static Produced data = 125176 bytes

Memory required for destination buffer = ceil(9 * 111261 / 8) +

55

= ceil (125168.625) + 55

= 125169 + 7

= 125169 + 55

= 125224 bytes to be allocated

Note: Note: Regardless of the ASB settings, the memory must be allocated for the worst

case. If an overflow occurs, either from static or dynamic compression, then the returned

counters, status, and expected application behavior is as shown per Table 18.

5.1.2 Data Plane APIs Overview

The Intel QuickAssist Technology Cryptographic API Reference Manual and the Intel®

QuickAssist Technology Data Compression API Reference Manual (refer to

Table 2) contain information on the APIs that are specific to data plane applications.

The APIs are recommended for applications that are executing in a data plane

environment where the cost of offload (that is, the cycles consumed by the driver

sending requests to the hardware) needs to be minimized. To minimize the cost of

offload, several constraints have been placed on the APIs. If these constraints are too

restrictive for your application, the traditional APIs can be used instead (at a cost of

additional IA cycles).

The definition of the Cryptographic Data Plane APIs are contained in:
$ICP_ROOT/quickassist/include/lac/cpa_cy_sym_dp.h

The definition of the Data Compression Data Plane APIs are contained in:
$ICP_ROOT/quickassist/include/dc/cpa_dc_dp.h

5.1.2.1 IA Cycle Count Reduction When Using Data Plane APIs

From an IA cycle count perspective, the Data Plane APIs are more performant than the

traditional APIs (that is, for example, the symmetric cryptographic APIs defined in

$ICP_ROOT/quickassist/include/lac/cpa_cy_sym.h). The majority of the

 Supported APIs

Intel® QuickAssist Technology Software for Linux*

Programmer’s Guide – Hardware Version v1.7 September 2020

68 Intel Confidential Document Number: 336210-014

cycle count reduction is realized by the reduction of supported functionality in the Data

Plane APIs and the application of constraints on the calling application (refer to Section

5.1.2.2, Usage Constraints on the Data Plane APIs).

In addition, to further improve performance, the Data Plane APIs attempt to amortize

the cost of an MMIO access when sending requests to, and receiving responses from,

the hardware.

A typical usage is to call the cpaCySymDpEnqueueOp() or the cpaDcDpEnqueueOp()

function multiple times with requests to process and the performOpNow flag set to

CPA_FALSE. Once multiple requests have been enqueued, the

cpaCySymDpEnqueueOp() or cpaDcDpEnqueueOp() function may be called with the

performOpNow flag set to CPA_TRUE. This sends the requests to the Intel® QAT

Endpoint for processing. This sequence is shown in Figure 6.

Figure 6. Amortizing the Cost of an MMIO Across Multiple Requests

Supported APIs

Intel® QuickAssist Technology Software for Linux*

September 2020 Programmer’s Guide – Hardware Version v1.7

Document Number: 336210-014 Intel Confidential 69

The Intel® QAT API returns a CPA_STATUS_RETRY when the ring becomes full.

The number of requests to place on the ring is application dependent and it is

recommended that performance testing be conducted with tuneable parameter values.

Two functions, cpaCySymDpPerformOpNow() and cpaDCDpPerformOpNow(), are

also provided that allow queued requests to be sent to the hardware without the need

for queuing an additional request. This is typically used in the scenario where a request

has not been received for some time and the application would like the enqueued

requests to be sent to the hardware for processing.

5.1.2.2 Usage Constraints on the Data Plane APIs

The following constraints apply to the use of the Data Plane APIs. If the application can

handle these constraints, the Data Plane APIs can be used:

¶ Thread safety is not supported. Each software thread should have access to its own

unique instance (CpaInstanceHandle) to avoid contention on the hardware rings.

¶ For performance, polling is supported, as opposed to interrupts (which are

comparatively more expensive).

¶ Polling functions (refer to Section 5.2.3, Polling Functions) are provided to read

responses from the hardware response queue and dispatch callback functions.

¶ Buffers and buffer lists are passed using physical addresses to avoid virtual-to-

physical address translation costs.

¶ Alignment restrictions are placed on the operation data (that is, the

¶ CpaCySymDpOpData structure) passed to the Data Plane API. The operation data

must be at least 8-byte aligned, contiguous, resident, DMA-accessible memory.

¶ Only asynchronous invocation is supported, that is, synchronous invocation is not

supported.

¶ There is no support for cryptographic partial packets. If support for partial packets is

required, the traditional Intel® QAT APIs should be used.

¶ Since thread safety is not supported, statistic counters on the Data Plane APIs are

not atomic.

¶ The default instance (CPA_INSTANCE_HANDLE_SINGLE) is not supported by the

Data Plane APIs. The specific handle should be obtained using the instance discovery

functions (cpaCyGetNumInstances(), cpaCyGetInstances()).

¶ The submitted requests are always placed on the high-priority ring.

¶ The data plane APIs are supported in both user space and polling mode in kernel

space, but not supported in interrupt mode in kernel space.

 Supported APIs

Intel® QuickAssist Technology Software for Linux*

Programmer’s Guide – Hardware Version v1.7 September 2020

70 Intel Confidential Document Number: 336210-014

5.1.2.3 Cryptographic and Data Compression API Descriptions

Full descriptions of the Intel® QAT APIs are contained in the Intel QuickAssist

Technology Cryptographic API Reference Manual and the Intel® QuickAssist Technology

Data Compression API Reference Manual (refer to Table 2). In addition to the Intel® QAT

Data Plane APIs, there are a number of Data Plane Polling APIs that are described in

Section 5.2.3, Polling Functions.

5.1.3 Recovering from a Compress and Verify error

The Compress and Verify and Recover (CnVnR) feature allows a compression error to

be recovered in a seamless manner. It is supported in both the Traditional and in the

Data Plane API.

The CnVnR feature is an enhancement of the existing Compress and Verify (CnV)

solution. When a compress and verify error is detected, the Intel® QAT software will do

a correction without returning a CnV error to the application.

When a recovery occurs, CpaDcRqResults.status will return CPA_DC_OK or

CPA_DC_OVERFLOW and the destination buffer will hold valid DEFLATE data.

The application can find out if CnVnR is supported by querying the instance capabilities

via the cpaDcQueryCapabilities API. On completion, the

compressAndVerifyAndRecover property of the CpaDcInstanceCapabilities

structure will be set to CPA_TRUE if the feature is supported.

Table 19 provides details on the Intel QuickAssist APIs supporting the CnVnR feature.

Table 19. API Support for Compress and Verify and Recover

API CnVnR Behavior

cpaDcCompressData Enabled by default, no option to disable it.

cpaDcCompressData2
CnVnR is enabled when compressAndVerifyAndRecover
property is set to CPA_TRUE in CpaDcOpData structure.

cpaDcDecompressData Not applicable

cpaDcDecompressData2 Not applicable

cpaDcDpEnqueueOp
CnVnR is enabled when compressAndVerifyAndRecover
property is set to CPA_TRUE in CpaDcOpData structure.

cpaDcDpEnqueueOpBatch
CnVnR is enabled when compressAndVerifyAndRecover
property is set to CPA_TRUE in CpaDcOpData structure.

Supported APIs

Intel® QuickAssist Technology Software for Linux*

September 2020 Programmer’s Guide – Hardware Version v1.7

Document Number: 336210-014 Intel Confidential 71

When a CnV recovery takes place, the Intel® QAT software creates a stored block out of

the input payload that could not be compressed. The maximal size of a stored block

allowed by the deflate standard is 65,535 bytes.

When a stored block is created, the DEFLATE header specifies that the data is

uncompressed so that the decompressor does not attempt to decode the cleartext

data that follows the header. The size of a stored block can be defined as:

Stored block size = Source buffer size + 5 Bytes (used for the deflate header)

If a stored block needs to be created out of a cleartext payload size greater than 65,535

bytes, the Intel QuickAssist solution creates one stored block of 65,535 bytes and

CpaDcRqResults.status returns CPA_DC_OVERFLOW.

Note: If the application uses the Data Plane API, it is responsible for submitting request sizes

smaller or equal to 65,530 bytes to avoid meeting the overflow error limit.

5.1.4 Counting Recovered Compression Errors

The Intel QuickAssist API has been updated to allow the application to track recovered

compression errors. The CpaDcStats data structure has a new property called

numCompCnvErro rsRecovered that is incremented every time a compression

recovery happens.

The compression recovery process is agnostic to the application.

CpaDcRqResults.status returns CPA_DC_OK when a compression recovery takes

place. The only way to know if a compression recovery took place on the current

request is to call the cpaDcGetStats() API and to monitor

CpaDcStats.numCompCnvErrorsRecovered .

5.1.5 Compress and Verify Error log in Sysfs:

The implementation of the Compress and Verify and Recover solution keeps a record

of the CnV errors that have occurred since the driver was loaded. The error count is

provided on a per Acceleration Engine basis.

 Supported APIs

Intel® QuickAssist Technology Software for Linux*

Programmer’s Guide – Hardware Version v1.7 September 2020

72 Intel Confidential Document Number: 336210-014

The path to the CnV error log is:

cat /sys/k ernel/debug/qat_dh895xcc_<Bus> \ :<device>.<Function>/

cnv_errors

Each Acceleration Engine keeps a count of the CnV errors. The CnV error counter is

reset when the driver is loaded. The tool also reports the last error type that caused a

CnV error.

5.2 Additional APIs

There are a number of additional APIs that can serve for optimization and other uses

outside of the Intel QuickAssist Technology services.

Note: Not all additional APIs are supported with all versions of the software package.

The additional APIs are grouped into the following categories:

¶ Dynamic Instance Allocation Functions

¶ IOMMU Remapping Functions

¶ Polling Functions

¶ User Space Access Configuration Functions

¶ Version Information Function

¶ Acceleration Drivers Overview

¶ Compress and Verify (CnV) Related APIs

5.2.1 Dynamic Instance Allocation Functions

These functions are intended for the dynamic allocation of instances in user space. The

user can use these functions to allocate/free instances defined in the [DYN] section of

the configuration file.

These functions are useful if the user needs to dynamically allocate/free cryptographic

(CY) or data compression (DC) instances at runtime. This is in contrast to statically

specifying the number of CY or DC instances at configuration time, where the number

of instances cannot be changed unless the user modifies the .conf file and restarts

the acceleration service.

The advantage of using these functions is that the number of CY/DC instances can be

changed on-demand at runtime. The disadvantage is that runtime performance is

impacted if the number of CY/DC instances is changed frequently.

If the user space application knows the number of instances to be used before starting,

then the user can define Number<Service>Instances in the [User Process] section

of the *.conf file.

Supported APIs

Intel® QuickAssist Technology Software for Linux*

September 2020 Programmer’s Guide – Hardware Version v1.7

Document Number: 336210-014 Intel Confidential 73

If the user space application can only know the number of instances at runtime, or

wants to change the number at runtime, then the user can call the Dynamic Instance

Allocation functions to allocate/free instances dynamically. The

Number<Service>Instances in the [DYN] section of the .conf file(s) defines the

maximum number of instances that can be allocated by user processes.

This can be useful when sharing instances among multiple applications at runtime. The

maximum number of instances in a system is known in advance and it is possible to

distribute them statically between applications using the configuration files. Once the

driver is started, however, this cannot be changed. If, for example, there are 32 CY

instances and we need to provision 16 processes, we can statically assign two CY

instances per process. This can be a problem when a process needs more instances at

any given time. With dynamic instance allocation, we can create a pool of instances that

can be "shared" between the processes.

Continuing the example above with 32 CY instances and 16 processes, we can assign

statically one CY instance to each process and create a pool of 16 [DYN] instances from

the remainder. If at runtime one process needs more acceleration power, it can allocate

some more instances from the pool, say, for example, eight, use them as appropriate

and free them back to the pool when the work has been completed. Thereafter, other

processes can use these instances as needed.

All dynamic instance allocation function definitions are located in: $ICP_ROOT/

quickassist/lookaside/access_layer/include/icp_sal_user.h .

The dynamic instance allocation functions include:

Å Section 5.2.1.1, icp_sal_userCyGetAvailableNumDynInstances

Å Section 5.2.1.2, icp_sal_userDcGetAvailableNumDynInstances

Å Section 5.2.1.3, icp_sal_userCyInstancesAlloc

Å Section 5.2.1.4, icp_sal_userDcInstancesAlloc

Å Section 5.2.1.5, icp_sal_userCyFreeInstances

Å Section 5.2.1.6, icp_sal_userDcFreeInstances

Å Section 5.2.1.7, icp_sal_userCyGetAvailableNumDynInstancesByDevPkg

Å Section 5.2.1.8, icp_sal_userDcGetAvailableNumDynInstancesByDevPkg

Å Section 5.2.1.9, icp_sal_userCyInstancesAllocByDevPkg

Å Section 5.2.1.10, icp_sal_userDcInstancesAllocByDevPkg

Å Section 5.2.1.11, icp_sal_userCyGetAvailableNumDynInstancesByPkgAccel

 Supported APIs

Intel® QuickAssist Technology Software for Linux*

Programmer’s Guide – Hardware Version v1.7 September 2020

74 Intel Confidential Document Number: 336210-014

Å Section 5.2.1.12, icp_sal_userCyInstancesAllocByPkgAccel

5.2.1.1 icp_sal_userCyGetAvailableNumDynInstances

Get the number of cryptographic instances that can be dynamically allocated using the

icp_sal_userCyInstancesAlloc function.

5.2.1.1.1 Syntax

CpaStatus icp_sal_userCyGetAvailableNumDynI nstances

(Cpa32U *pNumCyInstances);

5.2.1.1.2 Parameters

*pNumDcInstances A pointer to the number of data compression instances available

for dynamic allocation.

5.2.1.1.3 Return Value

The icp_sal_userCyGetAvailableNumDynInstances function returns one of the

following codes:

5.2.1.1.4 Code Meaning

CPA_STATUS_SUCCESS Successfully retrieved the number of cryptographic instances

available for dynamic allocation.

CPA_STATUS_FAIL Indicates a failure.

5.2.1.2 icp_sal_userDcGetAvailableNumDynInstances

Get the number of data compression instances that can be dynamically allocated using

the icp_sal_userDcInstancesAlloc function.

5.2.1.2.1 Syntax

CpaStatus icp_sal_userDcGetAvailableNumDynInstances

(Cpa32U* pNumDcInstances);

5.2.1.2.2 Parameters

*pNumDcInstances A pointer to the number of data compression instances available

for dynamic allocation.

5.2.1.2.3 Return Value

The icp_sal_userDcGetAvailableNumDynInstances function returns one of the

following codes:

Supported APIs

Intel® QuickAssist Technology Software for Linux*

September 2020 Programmer’s Guide – Hardware Version v1.7

Document Number: 336210-014 Intel Confidential 75

5.2.1.2.4 Code Meaning

CPA_STATUS_SUCCESS Successfully retrieved the number of cryptographic instances

available for dynamic allocation.

CPA_STATUS_FAIL Indicates a failure.

5.2.1.3 icp_sal_userCyInstancesAlloc

Allocate the specified number of cryptographic (CY) instances from the amount

specified in the [DYN] section of the configuration file. The numCyInstances

parameter specifies the number of CY instances to allocate and must be less than or

equal to the value of the NumberCyInstances parameter in the [DYN] section of the

configuration file.

5.2.1.3.1 Syntax

CpaStatus icp_sal_userCyInstancesAlloc(Cpa32U numCyInstances,

CpaInstanceHandle *pCyInstances);

5.2.1.3.2 Parameters

 numCyInstances the number of CY instances to allocate.

*pCyInstances A pointer to the CY instances.

5.2.1.3.3 Return Value

The icp_sal_userCyInstancesAlloc function returns one of the following codes:

5.2.1.3.4 Code Meaning

CPA_STATUS_SUCCESS Successfully allocated the specified number of CY instances.

CPA_STATUS_FAIL Indicates a failure.

5.2.1.4 icp_sal_userDcInstancesAlloc

Allocate the specified number of data compression (DC) instances from the amount

specified in the [DYN] section of the configuration file. The numDcInstances

parameter specifies the number of dc instances to allocate and must be less than or

equal to the value of the NumberDcInstances parameter in the [DYN] section of the

configuration file.

5.2.1.4.1 Syntax

CpaStatus icp_sal_userDcInstancesAlloc(Cpa32U numDcInstances,

CpaInstanceHandle *pDcI nstances);

 Supported APIs

Intel® QuickAssist Technology Software for Linux*

Programmer’s Guide – Hardware Version v1.7 September 2020

76 Intel Confidential Document Number: 336210-014

5.2.1.4.2 Parameters

numDcInstances the number of DC instances to allocate.

*pDcInstances A pointer to the DC instances.

5.2.1.4.3 Return Value

The icp_sal_userDcInstancesAlloc function returns one of the following codes:

5.2.1.4.4 Code Meaning

CPA_STATUS_SUCCESS Successfully allocated the specified number of DC instances.

CPA_STATUS_FAIL Indicates a failure.

5.2.1.5 icp_sal_userCyFreeInstances

Free the specified number of cryptographic (CY) instances from the amount specified in

the [DYN] section of the configuration file. The numCyInstances parameter specifies

the number of CY instances to free.

5.2.1.5.1 Syntax

CpaStatus icp_sal_userCyFreeInstances(Cpa3 2U numCyInstances,

CpaInstanceHandle *pCyInstances);

5.2.1.5.2 Parameters

numCyInstances the number of CY instances to free.

*pCyInstances A pointer to the CY instances to free.

5.2.1.5.3 Return Value

The icp_sal_userCyFreeInstances function returns one of the following codes:

5.2.1.5.4 Code Meaning

CPA_STATUS_SUCCESS Successfully freed the specified number of CY instances.

CPA_STATUS_FAIL Indicates a failure.

5.2.1.6 icp_sal_userDcFreeInstances

Free the specified number of data compression (DC) instances from the amount

specified in the [DYN] section of the configuration file. The numDcInstances

parameter specifies the number of DC instances to free.

Supported APIs

Intel® QuickAssist Technology Software for Linux*

September 2020 Programmer’s Guide – Hardware Version v1.7

Document Number: 336210-014 Intel Confidential 77

5.2.1.6.1 Syntax

CpaStatus icp_sal_userDcFreeInstances(Cpa32U numDcInstances,

CpaInstanceHandle *pDcInstances);

5.2.1.6.2 Parameters

numDcInstances the number of DC instances to free.

*pDcInstances A pointer to the DC instances to free.

5.2.1.6.3 Return Value

The icp_sal_userDcInstancesAlloc function returns one of the following codes:

5.2.1.6.4 Code Meaning

CPA_STATUS_SUCCESS Successfully freed the specified number of DC instances.

CPA_STATUS_FAIL Indicates a failure.

5.2.1.7 icp_sal_userCyGetAvailableNumDynInstancesByDevPkg

Get the number of cryptographic instances that can be dynamically allocated using the

icp_sal_userCyGetAvailableNumDynInstancesByDevPkg function.

5.2.1.7.1 Syntax

CpaStatus icp_sal_userCyGetAvailableNumDynInstancesByDevPkg(

Cpa32U *pNumCyInstances, Cpa32U devPkgID) ;

5.2.1.7.2 Parameters

*pNumCyInstances A pointer to the number of cryptographic instances available for

dynamic allocation.

devPkgID the device ID of the device of interest (same as accelID in other APIs) If -1

then selects from all devices.

5.2.1.7.3 Return Value

The icp_s al_userCyGetAvailableNumDynInstancesByDevPkg function returns

one of the following codes:

5.2.1.7.4 Code Meaning

CPA_STATUS_SUCCESS Successfully retrieved the number of cryptographic instances

available for dynamic allocation.

 Supported APIs

Intel® QuickAssist Technology Software for Linux*

Programmer’s Guide – Hardware Version v1.7 September 2020

78 Intel Confidential Document Number: 336210-014

CPA_STATUS_FAIL Indicates a failure.

5.2.1.8 icp_sal_userDcGetAvailableNumDynInstancesByDevPkg

Get the number of data compression instances that can be dynamically allocated using

the icp_sal_userDcGetAvailableNumDynInstancesByDevPkg function.

5.2.1.8.1 Syntax

CpaStatus icp_sal_userDcGetAvailableNumDynInstancesByDevPkg(

Cpa32U *pNumDcInstances, Cpa32U devPkgID);

5.2.1.8.2 Parameters

*pNumDcInstances A pointer to the number of data compression instances available

for dynamic allocation.

devPkgID the device ID of the device of interest (same as accelID in other APIs) If -1

then selects from all devices.

5.2.1.8.3 Return Value

The icp_sal_userDcGetAvailableNumDynInstancesByDevPkg function returns

one of the following codes:

5.2.1.8.4 Code Meaning

CPA_STATUS_SUCCESS Successfully retrieved the number of cryptographic instances

available for dynamic allocation.

CPA_STATUS_FAIL Indicates a failure.

5.2.1.9 icp_sal_userCyInstancesAllocByDevPkg

Allocate the specified number of cryptographic (CY) instances from the amount

specified in the [DYN] section of the configuration file. The numCyInstances

parameter specifies the number of CY instances to allocate and must be less than or

equal to the value of the NumberCyInstances parameter in the [DYN] section of the

configuration file.

5.2.1.9.1 Syntax

CpaStatus icp_sal_userCyInstancesAllocByDevPkg(Cpa32U

numCyInstances, CpaInstanceHandle *pCyInstances, devPkgID);

5.2.1.9.2 Parameters

numCyInstances the number of CY instances to allocate.

Supported APIs

Intel® QuickAssist Technology Software for Linux*

September 2020 Programmer’s Guide – Hardware Version v1.7

Document Number: 336210-014 Intel Confidential 79

*pCyInstances A pointer to the CY instances.

devPkgID the device ID of the device of interest (same as accelID in other APIs) If -1

then selects from all devices.

5.2.1.9.3 Return Value

The icp_sal_userCyInstancesAllocByDevPkg function returns one of the

following codes:

5.2.1.9.4 Code Meaning

CPA_STATUS_SUCCESS Successfully allocated the specified number of CY instances.

CPA_STATUS_FAIL Indicates a failure.

5.2.1.10 icp_sal_userDcInstancesAllocByDevPkg

Allocate the specified number of data compression (DC) instances from the amount

specified in the [DYN] section of the configuration file. The numDcInstances

parameter specifies the number of DC instances to allocate and must be less than or

equal to the value of the NumberDcInstances parameter in the [DYN] section of the

configuration file.

5.2.1.10.1 Syntax

CpaStatus icp_sal_userDcInstancesAllocByDevPkg(Cpa32U

numDcInstances, CpaInstanceHandle *pDcInstances, Cpa32U

devPkgID);

5.2.1.10.2 Parameters

numDcInstances the number of DC instances to allocate.

*pDcInstances A pointer to the DC instances.

devPkgID the device ID of the device of interest (same as accelID in other APIs) If -1

then selects from all devices.

5.2.1.10.3 Return Value

The icp_sal_userDcInstancesAllocByDevPkg function returns one of the

following codes:

5.2.1.10.4 Code Meaning

CPA_STATUS_SUCCESSSuccessfully allocated the specified number of DC instances.

 Supported APIs

Intel® QuickAssist Technology Software for Linux*

Programmer’s Guide – Hardware Version v1.7 September 2020

80 Intel Confidential Document Number: 336210-014

CPA_STATUS_FAIL Indicates a failure.

5.2.1.11 icp_sal_userCyGetAvailableNumDynInstancesByPkgAccel

Get the number of cryptographic instances that can be dynamically allocated using the

icp_sal_userCyGetAvailableNumDynInstancesByPkgAccel function.

5.2.1.11.1 Syntax

CpaStatus icp_sal_userCyGetAvailableNumDynInstancesByPkgAccel(

Cpa32U *pNumCyInstances, Cpa32U devPkgID, Cpa32U

accelerator_number);

5.2.1.11.2 Parameters

*pNumCyInstances A pointer to the number of cryptographic instances available for

dynamic allocation.

devPkgID the device ID of the device of interest (Same as accelID in other APIs) If -

1 then selects from all devices.

accelerator_number Accelerator Engine to use. As 0 is the only valid value on C62x

device, this API is same as

icp_sal_userCyGetAvailableNumDynInstancesByD evP kg .

5.2.1.11.3 Return Value

The icp_sal_userCyGetAvailableNumDynInstancesByPkgAccel function

returns one of the following codes:

5.2.1.11.4 Code Meaning

CPA_STATUS_SUCCESS Successfully retrieved the number of cryptographic instances

available for dynamic allocation.

CPA_STATUS_FAIL Indicates a failure.

5.2.1.12 icp_sal_userCyInstancesAllocByPkgAccel

Allocates the specified number of cryptographic (CY) instances from the amount

specified in the [DYN] section of the configuration file. The numCyInstances

parameter specifies the number of CY instances to allocate and must be less than or

equal to the value of the NumberCyInstances parameter returned by a call to the

icp_sal_userCyInstancesAllocByPkgAccel function.

Supported APIs

Intel® QuickAssist Technology Software for Linux*

September 2020 Programmer’s Guide – Hardware Version v1.7

Document Number: 336210-014 Intel Confidential 81

5.2.1.12.1 Syntax

CpaStatus icp_sal_userCyInstancesAllocByPkgAccel(Cpa32U

numCyInstan ces, CpaInstanceHandle *pCyInstances, Cpa32U devPkgID,

Cpa32U accelerator_number);

5.2.1.12.2 Parameters

NumCyInstances the number of CY instances to allocate.

*pCyInstances A pointer to the CY instances.

devPkgID the device ID of the device of interest (same as accelID in other APIs). If -

1, then selects from all devices.

accelerator_number Accelerator Engine to use. As 0 is the only valid value on C62x

device, this API is same as icp_sal_userCyInstancesAllocByDevPkg .

5.2.1.12.3 Return Value

The icp_sal_userCyInstancesAllocByDevPkg function returns one of the

following codes:

5.2.1.12.4 Code Meaning

CPA_STATUS_SUCCESS Successfully allocated the specified number of CY instances.

CPA_STATUS_FAIL Indicates a failure.

5.2.2 IOMMU Remapping Functions

These functions are intended for IOMMU remapping operations.

All IOMMU remapping function definitions are located in: $ICP_ROOT/quickassist/

lookaside/access_layer/include/icp_sal_iommu.h .

The IOMMU remapping functions include:

¶ Section 5.2.2.1, icp_sal_iommu_get_remap_size

¶ Section 5.2.2.2, icp_sal_iommu_map

¶ Section 5.2.2.3, icp_sal_iommu_unmap

5.2.2.1 icp_sal_iommu_get_remap_size

Returns the page_size rounded for IOMMU remapping.

 Supported APIs

Intel® QuickAssist Technology Software for Linux*

Programmer’s Guide – Hardware Version v1.7 September 2020

82 Intel Confidential Document Number: 336210-014

5.2.2.1.1 Syntax

size_ticp_sal_iommu_get_remap_size(size_t size);

5.2.2.1.2 Parameters

size_t the minimum required page size.

5.2.2.1.3 Return Value

The icp_sal_iommu_get_remap_size function returns the page_size rounded for

IOMMU remapping.

5.2.2.2 icp_sal_iommu_map

Adds an entry to the IOMMU remapping table.

5.2.2.2.1 Syntax

CpaStatus icp_sal_iommu_map(Cpa64U phaddr, Cpa64U iova, size_t

size);

5.2.2.2.2 Parameters

phaddr Host physical address.

iova Guest physical address.

size Size of the remapped region.

5.2.2.2.3 Return Value

The icp_sal_iommu_map function returns one of the following codes:

5.2.2.2.4 Code Meaning

CPA_STATUS_SUCCESS Successful operation.

CPA_STATUS_FAIL Indicates a failure.

5.2.2.3 icp_sal_iommu_unmap

Removes an entry from the IOMMU remapping table.

5.2.2.3.1 Syntax

CpaStatus icp_sal_iommu_unmap(Cpa64U iova, size_t size);

Supported APIs

Intel® QuickAssist Technology Software for Linux*

September 2020 Programmer’s Guide – Hardware Version v1.7

Document Number: 336210-014 Intel Confidential 83

5.2.2.3.2 Parameters

 iova Guest physical address to be removed.

 size Size of the remapped region.

5.2.2.3.3 Return Value

The icp_sal_iommu_ unmap function returns one of the following codes:

5.2.2.3.4 Code Meaning

CPA_STATUS_SUCCESS Successful operation.

CPA_STATUS_FAIL Indicates a failure.

5.2.2.4 IOMMU Remapping Function Usage

These functions are required when the user wants to access an acceleration service

from the Physical Function (PF) when SR-IOV is enabled in the driver. In this case, all

I/O transactions from the device go through DMA remapping hardware. This hardware

checks 1) if the transaction is legitimate and 2) what physical address the given I/O

address needs to be translated to. If the I/O address is not in the transaction table, it

fails with a DMA Read error shown as follows:
DRHD: handling fault status reg 3

DMAR:[DMA Read] Request device [02:01.2] fault addr <ADDR>

DMAR:[fault reason 06] PTE Read access is not set

To make this work, the user must add a 1:1 mapping as follows:

1. Get the size required for a buffer:
int size = icp_sal_iommu_get_remap_size(size_of_data);

2. Allocate a buffer:
char *buff = malloc(size);

3. Get a physical pointer to the buffer:
buff_phys_addr = virt_to_phys(buff);

4. Add a 1:1 mapping to the IOMMU tables:
icp_sal_iommu_map(buff_phys_addr, buff_phys_addr, size);

5. Use the buffer to send data to the Intel® QAT Endpoint.

6. Before freeing the buffer, remove the IOMMU table entry:
icp_sal_iommu_unmap(buff_phys_addr, size);

7. Free the buffer:
free(buff);

The IOMMU remapping functions can be used in all contexts that the Intel® QAT APIs

can be used, that is, kernel and user space in a Physical Function (PF) Domain 0, as well

as kernel and user space in a Virtual Machine (VM). In the case of VM, the APIs will do

nothing. In the PF Domain 0 case, the APIs will update the hardware IOMMU tables.

 Supported APIs

Intel® QuickAssist Technology Software for Linux*

Programmer’s Guide – Hardware Version v1.7 September 2020

84 Intel Confidential Document Number: 336210-014

5.2.3 Polling Functions

These functions are intended for retrieving response messages that are on the rings

and dispatching the associated callbacks.

All polling function definitions are located in: $ICP_ROOT/quickassist/

lookaside/access_layer/include/icp_sal_poll.h .

The polling functions include:

¶ Section 5.2.3.1, icp_sal_pollBank

¶ Section 5.2.3.2, icp_sal_pollAllBanks

¶ Section 5.2.3.3, icp_sal_CyPollInstance

¶ Section 5.2.3.4, icp_sal_DcPollInstance

¶ Section 5.2.3.5, icp_sal_CyPollDpInstance

¶ Section 5.2.3.6, icp_sal_DcPollDpInstance

5.2.3.1 icp_sal_pollBank

Poll all rings on the given Intel® QAT Endpoint on a given bank number to determine if

any of the rings contain response messages from the Intel® QAT Endpoint. The

response_quota input parameter is per ring.

5.2.3.1.1 Syntax

CpaStatus icp_sal_pollBank(Cpa32U accelId, Cpa32U bank_number,

Cpa32U respo nse_quota);

5.2.3.1.2 Parameters

accelId the device number associated with the Intel® QAT Endpoint.

The valid range is 0 to the number of Intel® QAT Endpoint devices in the system.

bank_number the number of the memory bank on the Intel® QAT Endpoint that will be

polled for response messages. The valid range is 0 to 31.

response_quota the maximum number of responses to take from the ring in one

call.

5.2.3.1.3 Return Value

The icp_sal_pollBank function returns one of the following codes:

5.2.3.1.4 Code Meaning

CPA_STATUS_SUCCESS Successfully polled a ring with data.

Supported APIs

Intel® QuickAssist Technology Software for Linux*

September 2020 Programmer’s Guide – Hardware Version v1.7

Document Number: 336210-014 Intel Confidential 85

CPA_STATUS_RETRY There is no data on any ring on any bank or the banks are

already being polled.

CPA_STATUS_FAIL Indicates a failure.

5.2.3.2 icp_sal_pollAllBanks

Poll all banks on the given Intel® QAT Endpoint to determine if any of the rings contain

response messages from the Intel® QAT Endpoint. The response_quota input

parameter is per ring.

5.2.3.2.1 Syntax

CpaStatus icp_sal_pollAllBanks(Cpa32U accelId, Cpa32U

response_qu ota);

5.2.3.2.2 Parameters

accelId the device number associated with the Intel® QAT Endpoint.

The valid range is 0 to the number of Intel® QAT Endpoints in the system.

response_quota the maximum number of responses to take from the ring in one

call.

5.2.3.2.3 Return Value

The icp_sal_pollAllBanks function returns one of the following codes:

5.2.3.2.4 Code Meaning

CPA_STATUS_SUCCESS Successfully polled a ring with data.

CPA_STATUS_RETRY There is no data on any ring on any bank or the banks are

already being polled.

CPA_STATUS_FAIL Indicates a failure.

5.2.3.3 icp_sal_CyPollInstance

Poll the cryptographic (CY) logical instance associated with the instanceHandle to

retrieve requests that are on response rings associated with that instance and dispatch

the associated callbacks. The response_quota input parameter is the maximum

number of responses to process in one call.

Note: The icp_sal_CyPollInstance() function is used in conjunction with the

CyXIsPolled parameter in the acceleration configuration file.

 Supported APIs

Intel® QuickAssist Technology Software for Linux*

Programmer’s Guide – Hardware Version v1.7 September 2020

86 Intel Confidential Document Number: 336210-014

5.2.3.3.1 Syntax

CpaStatus icp_sal_CyPollInstance(CpaInstanceHandle

instanceHandle, Cpa32U response_quota);

5.2.3.3.2 Parameters

instanceHandle the logical instance to poll for responses on the response ring.

response_quota the maximum number of responses to take from the ring in one

call. When set to 0, all responses are retrieved.

5.2.3.3.3 Return Value

The icp_sal_CyPollInstance function returns one of the following codes:

5.2.3.3.4 Code Meaning

CPA_STATUS_SUCCESS The function was successful.

CPA_STATUS_RETRY There are no responses on the rings associated with the

specified logical instance.

Note: A ring is only polled if it contains data.

CPA_STATUS_FAIL Indicates a failure.

5.2.3.4 icp_sal_DcPollInstance

Poll the data compression (DC) logical instance associated with the instanceHandle

to retrieve requests that are on response rings associated with that instance and

dispatch the associated callbacks. The response_quota input parameter is the

maximum number of responses to process in one call.

Note: The icp_sal_DcPollInstance() function is used in conjunction with the

DcXIsPolled parameter in the acceleration configuration file.

5.2.3.4.1 Syntax

CpaStatus icp_sal_DcPollInstance(CpaInstanceHandl e

instanceHandle, Cpa32U response_quota);

5.2.3.4.2 Parameters

instanceHandle the logical instance to poll for responses on the response ring.

response_quota the maximum number of responses to take from the ring in one call.

When set to 0, all responses are retrieved.

Supported APIs

Intel® QuickAssist Technology Software for Linux*

September 2020 Programmer’s Guide – Hardware Version v1.7

Document Number: 336210-014 Intel Confidential 87

5.2.3.4.3 Return Value

The icp_sal_DcPollInstance function returns one of the following codes:

5.2.3.4.4 Code Meaning

CPA_STATUS_SUCCESS The function was successful.

CPA_STATUS_RETRY There are no responses on the rings associated with the

specified logical instance.

Note: A ring is only polled if it contains data.

CPA_STATUS_FAIL Indicates a failure.

5.2.3.5 icp_sal_CyPollDpInstance

Poll a particular cryptographic (CY) data path logical instance associated with the

instanceHandle to retrieve requests that are on the high-priority symmetric ring

associated with that instance and dispatch the associated callbacks. The

response_quota input parameter is the maximum number of responses to process in

one call.

5.2.3.5.1 Syntax

Note: This function is a Data Plane API function and consequently the restrictions in Section

5.1.2.2, “Usage Constraints on the Data Plane APIs” apply.
CpaStatus icp_sal_CyPollDpInstance(CpaInstanceHandle

instanceHandle, Cpa32U response_quota);

5.2.3.5.2 Parameters

instanceHandle the logical instance to poll for responses on the response ring.

response_quota the maximum number of responses to take from the ring in one

call. When set to 0, all responses are retrieved

5.2.3.5.3 Return Value .

The icp_sal_CyPollDpInstance() function returns one of the following codes:

5.2.3.5.4 Code Meaning

CPA_STATUS_SUCCESS The function was successful.

CPA_STATUS_RETRY There are no responses on the rings associated with the

specified logical instance.

 Supported APIs

Intel® QuickAssist Technology Software for Linux*

Programmer’s Guide – Hardware Version v1.7 September 2020

88 Intel Confidential Document Number: 336210-014

CPA_STATUS_FAIL Indicates a failure.

5.2.3.6 icp_sal_DcPollDpInstance

Poll a particular Data Compression (DC) data path logical instance associated with the

instanceHandle to retrieve requests that are on the response ring associated with

that instance. The response_quota input parameter is the maximum number of

responses to process in one call.

5.2.3.6.1 Syntax

Note: This function is a Data Plane API function and consequently the restrictions in Section

5.1.2.2, “Usage Constraints on the Data Plane APIs” apply.
CpaStatus icp_sal_DcPollDpInstance(CpaInstanceHandle

instanceHandle, Cpa32U resp onse_quota);

5.2.3.6.2 Parameters

instanceHandle the logical instance to poll for responses on the response ring.

response_quota the maximum number of responses to take from the ring in one

call. When set to 0, all responses are retrieved.

5.2.3.6.3 Return Value

The icp_sal_DcPollDpInstance function returns one of the following codes:

5.2.3.6.4 Code Meaning

CPA_STATUS_SUCCESS The function was successful.

CPA_STATUS_RETRY There are no responses on the rings associated with the

specified logical instance.

CPA_STATUS_FAIL Indicates a failure.

5.2.4 User Space Access Configuration Functions

Functions that allow the configuration of user space access to the Intel® QAT services

from processes running in user space.

All user space access configuration function definitions are located in $ICP_ROOT/

quickassist/lookaside/access_layer/include/icp_sal_user.h .

The user space access configuration functions include:

¶ Section 5.2.4.1, icp_sal_userStart

¶ Section 5.2.4.2, icp_sal_userStop

Supported APIs

Intel® QuickAssist Technology Software for Linux*

September 2020 Programmer’s Guide – Hardware Version v1.7

Document Number: 336210-014 Intel Confidential 89

5.2.4.1 icp_sal_userStart

Initializes user space access to an Intel® QAT Endpoint and starts in the pProcessName

section in the given section of the configuration file. This function needs to be called

prior to any call to Intel® QAT API function from the user space process. This function is

typically called only once in a user space process.

Note: The icp_sal_userStartMultiProcess() function is still supported, but the

parameter limitDevAccess is ignored because its value is set once in the configuration file

and is not allowed to be specified again in the function.

The configuration format allows the user to easily create a configuration for many user

spaces processes. The driver internally generates unique process names and a valid

configuration for each process based on the section name (pSectionName) and mode

(lim itDevAccess) provided.

For example, on a system with M number of devices, if all M configuration files contain:
[IPSec]

NumProcesses = N LimitDevAccess = 0

then N internal sections are generated (each with instances on all devices) and N

processes can be started at any given time. Each process can call

icp_sal_userStart("IPSec") and the driver determines the unique name to use

for each process.

Similarly, on an M device system, if all M configuration files contain:
[SSL]

NumProcesses = N LimitDevAccess=1

then M*N internal sections are generated (each with instances on one device only) and

M*N processes can be started at any given time. Each process can call

i cp_sal_userStart("SSL") and the driver determines the unique name to use for

each process.

Refer to Section 4.5 Configuring Multiple Processes on a System with Multiple Intel®

QAT Endpoints for a detailed example.

5.2.4.1.1 Syntax

CpaStatus icp_sal_userStart(const char *pSectionName);

5.2.4.1.2 Parameters

*pSectionName the section name described in the simplified configuration file

format.

limitDevAccess Deprecated/ignored.

 Supported APIs

Intel® QuickAssist Technology Software for Linux*

Programmer’s Guide – Hardware Version v1.7 September 2020

90 Intel Confidential Document Number: 336210-014

5.2.4.1.3 Return Value

The icp_sal_userStart function returns one of the following codes:

5.2.4.1.4 Code Meaning

CPA_STATUS_SUCCESS Successfully started user space access to the Intel® QAT

Endpoint as defined in the configuration file.

CPA_STATUS_FAIL Operation failed.

5.2.4.2 icp_sal_userStop

Closes user space access to the Intel® QAT Endpoint; stops the services that were

running and frees the allocated resources. After a successful call to this function, user

space access to the Intel® QAT Endpoint from a calling process is not possible. This

function should be called once when the process is finished using the Intel® QAT

Endpoint and does not intend to use it again.

5.2.4.2.1 Syntax

CpaStatus icp_sal_userStop(void);

5.2.4.2.2 Parameters

None

5.2.4.2.3 Return Value

The icp_sal_userStop function returns one of the following codes:

5.2.4.2.4 Code Meaning

CPA_STATUS_SUCCESS Successfully stopped user space access to the Intel® QAT

Endpoint.

CPA_STATUS_FAIL Operation failed.

5.2.5 Version Information Function

A function that allows the retrieval of version information related to the software and

hardware being used.

The version information function definition is located in: $ICP_ROOT/quickassist/

lookaside/access_layer/include/icp_sal_versions.h .

There is only one version information function, that is,

icp_s al_getDevVersionInfo .

Supported APIs

Intel® QuickAssist Technology Software for Linux*

September 2020 Programmer’s Guide – Hardware Version v1.7

Document Number: 336210-014 Intel Confidential 91

5.2.5.1 icp_sal_getDevVersionInfo

Retrieves the hardware revision and information on the version of the software

components being run on a given device.

Note: The icp_sal_userStartMultiProcess (or icp_sal_userStart) function must

be called before calling this function. If not, calling this function returns

CPA_STATUS_INVALID_PARAM indicating an error. The

icp_sal_userStartMultiProcess (or icp_sal_userStart) function is responsible for

setting up the ADF user space component, which is required for this function to operate

successfully.

5.2.5.1.1 Syntax

CpaStatus icp_sal_getDevVersionInfo(Cpa32U devId,

icp_sal_dev_version_info_t *pVerInfo);

5.2.5.1.2 Parameters

devId the ID (number) of the device for which version information is to be retrieved

*pVerInfo A pointer to a structure that holds the version information.

5.2.5.1.3 Return Values

The icp_sal_getDevVersionInfo function returns one of the following codes:

5.2.5.1.4 Code Meaning

CPA_STATUS_SUCCESS Operation finished successfully; version information retrieved.

CPA_STATUS_INVALID_PARAM Invalid parameter passed to the function.

CPA_STATUS_RESOURCE System resource problem.

CPA_STATUS_FAIL Operation failed.

5.2.6 Reset Device Function

This API can only be called in user-space.

The device can be reset using this API call. This will schedule a reset of the device. The

device can also be reset using the adf_ctl utility, e.g. by calling adf_ctl qat_dev0

reset.

5.2.6.1 icp_sal_reset_device

Resets the device.

 Supported APIs

Intel® QuickAssist Technology Software for Linux*

Programmer’s Guide – Hardware Version v1.7 September 2020

92 Intel Confidential Document Number: 336210-014

5.2.6.1.1 Syntax

CpaStatus icp_sal_reset_de vice(Cpa32U accelid);

5.2.6.1.2 Parameters

accelid the device number.

5.2.6.1.3 Return Value

The icp_sal_reset_device function returns one of the following codes:

5.2.6.1.4 Code Meaning

CPA_STATUS_SUCCESS Successful operation.

CPA_STATUS_FAIL Indicates a failure.

5.2.7 Thread-Less APIs

These APIs can be used in the user space application.

The thread-less API functions include:

¶ Section 5.2.7.1, icp_sal_poll_device_events

¶ Section 5.2.7.2, icp_sal_find_new_devices

5.2.7.1 icp_sal_poll_device_events

This reads any pending device events from icp_dev%d_csr and forwards to

interested subsystems.

5.2.7.1.1 Syntax

CpaStatus icp_sal_poll_device_events(void) ;

5.2.7.1.2 Parameters

None

5.2.7.2 Return Value

The icp_sal_poll_device_events function returns one of the following codes:

5.2.7.2.1 Code Meaning

CPA_STATUS_SUCCESS Successful operation.

CPA_STATUS_FAIL Indicates a failure.

Supported APIs

Intel® QuickAssist Technology Software for Linux*

September 2020 Programmer’s Guide – Hardware Version v1.7

Document Number: 336210-014 Intel Confidential 93

5.2.7.3 icp_sal_find_new_devices

This tries to connect to any available devices that the kernel driver has brought up and

initialized for use in user space process.

5.2.7.3.1 Syntax

CpaStatus icp_sal_find_new_devices(void);

5.2.7.3.2 Parameters

None

5.2.7.3.3 Return Value

The icp_sal_find_new_devices function returns one of the following codes:

5.2.7.3.4 Code Meaning

CPA_STATUS_SUCCESS Successful operation.

CPA_STATUS_FAIL Indicates a failure.

5.2.8 Compress and Verify (CnV) Related APIs

These APIs can be used in the user space application.

The CnV API functions include:

¶ Section 5.2.8.1, icp_sal_dc_get_dc_error()

¶ Section 5.2.8.2, icp_sal_dc_simulate_error()

5.2.8.1 icp_sal_dc_get_dc_error()

This API allows the application to return the number of errors that occurred a particular

number of times during the lifetime of a process.

5.2.8.1.1 Syntax

Cpa64U icp_sal_get_dc_error(Cpa8S dcError);

5.2.8.1.2 Parameters

Compression Error code exposed by CpaDcReqStatus enum in cpa_dc.h

 Supported APIs

Intel® QuickAssist Technology Software for Linux*

Programmer’s Guide – Hardware Version v1.7 September 2020

94 Intel Confidential Document Number: 336210-014

5.2.8.1.3 Return Value

The icp_sal_get_dc_error() API returns a 64 bit unsigned integer representing

how many times the error type specified by Cpa8S dcError occurred in the current

process.

5.2.8.2 icp_sal_dc_simulate_error()

This API injects a simulated compression error for a defined number of compression or

decompression requests. The simulated compression errors can only be applied to the

traditional APIs. It must be called prior the APIs that perform the request.

In the case of a simulated Compress and Verify error for a single request, the

application would call icp_sal_dc_simulate_error() API as such:
icp_sal_dc_simulate_error(1, CPA_DC_VERIFY_ERROR);

Followed by a call to:

CpaDcCompressData() or CpaDcCompressData2() .

To use this API, the driver must be configured and compiled with option -- enabledc -

error - simulation .

5.2.8.2.1 Syntax

CpaStatus icp_sal_dc_simulate_error(Cpa8U numErrors, Cpa8S

dcError);

5.2.8.2.2 Parameters

Cpa8U numErrors Number of simulated compression or decompression errors

desired.

Cpa8S dcError Desired error code to be returned by the compression or

decompression API.

5.2.8.2.3 Return Value

The icp_sal_dc_simulate_error API returns one of the following codes:

5.2.8.2.4 Code Meaning

CPA_STATUS_SUCCESS Successful operation.

CPA_STATUS_FAIL Indicates that an invalid error type was assigned to dcError

parameter.

Supported APIs

Intel® QuickAssist Technology Software for Linux*

September 2020 Programmer’s Guide – Hardware Version v1.7

Document Number: 336210-014 Intel Confidential 95

5.2.9 Heartbeat APIs

These APIs check firmware/hardware status for a given device and are used as part of

the Heartbeat functionality.

The Heartbeat API functions include:

¶ Section 5.2.9.1, icp_sal_check_device()

¶ Section 5.2.9.2, icp_sal_check_all_devices()

¶ Section 5.2.9.3, icp_sal_heartbeat_simulate_failure()

5.2.9.1 icp_sal_check_device()

This function checks the status of the firmware/hardware for a given device and is used

as part of the Heartbeat functionality.

5.2.9.1.1 Syntax

CpaStatus icp_sal_check_device (Cpa32U accelID);

5.2.9.1.2 Parameters

accelid the device ID.

5.2.9.1.3 Return Value

The icp_sal_check_device function returns one of the following codes:

5.2.9.1.4 Code Meaning

CPA_STATUS_SUCCESS Successful operation.

CPA_STATUS_FAIL Indicates a failure.

5.2.9.2 icp_sal_check_all_devices()

This function checks the status of the firmware/hardware for all devices and is used as

part of the Heartbeat functionality.

5.2.9.2.1 Syntax

CpaStatus icp_sal_check_all_devices(void);

5.2.9.2.2 Parameters

None

 Supported APIs

Intel® QuickAssist Technology Software for Linux*

Programmer’s Guide – Hardware Version v1.7 September 2020

96 Intel Confidential Document Number: 336210-014

5.2.9.2.3 Return Value

The icp_sal_check_all_d evices function returns one of the following codes:

5.2.9.2.4 Code Meaning

CPA_STATUS_SUCCESS Successful operation.

CPA_STATUS_FAIL Indicates a failure.

5.2.9.3 icp_sal_heartbeat_simulate_failure()

This function simulates heartbeat failure for a specific device.

5.2.9.3.1 Syntax

CpaStatus icp_sal_heartbeat_simulate_failure(Cpa32U accelID);

5.2.9.3.2 Parameters

accelid the device ID.

5.2.9.3.3 Return Value

The icp_sal_heartbeat_simulate_failure function returns one of the

following codes:

5.2.9.3.4 Code Meaning

CPA_STATUS_SUCCESS Successful operation.

 CPA_STATUS_FAIL Indicates a failure.

5.2.10 Device Polling APIs

5.2.10.1 icp_sal_poll_device_events()

This function polls for device reset events.

5.2.10.1.1 Syntax

CpaStatus icp_sal_poll_device_events(void);

5.2.10.1.2 Parameters

None

Supported APIs

Intel® QuickAssist Technology Software for Linux*

September 2020 Programmer’s Guide – Hardware Version v1.7

Document Number: 336210-014 Intel Confidential 97

5.2.10.1.3 Return Value

The icp_sal_poll_device_events function returns one of the following codes:

5.2.10.1.4 Code Meaning

CPA_STATUS_SUCCESS Successful operation.

CPA_STATUS_FAIL Indicates a failure.

Note: The events are sent to each instance that has registered a callback function. The

callbacks are registered using cpaCyInstanceSetNotificationCb and
cpaDcInstanceSetNotificationCb.

5.2.10.2 cpaCyInstanceSetNotificationCb

Cryptographic instances use this function to register for device event notifications.

5.2.10.2.1 Syntax

CpaStatus cpaCyInstanceSetNotificationCb

 const CpaInstanceHandle instanceHandle,

 const CpaCyInstanceNotificationCbFunc

pinstanceNotificationCb,

 void *pCallbackTag);

5.2.10.2.2 Parameters

instanceHandle Instance handle.

pinstanceNotificationCb Instance notification callback function pointer.

pCallbackTag Opaque value provided by user.

5.2.10.2.3 Return Values

The cpaCyInstanceSetNotificationCb() function returns one of the following

codes:

5.2.10.2.4 Code Meaning

CPA_STATUS_SUCCESS The function was successful.

 CPA_STATUS_FAIL Indicates a failure.

CPA_STATUS_INVALID_PARAM Invalid parameter passed in.

CPA_STATUS_UNSUPPORTED Function is not supported.

 Supported APIs

Intel® QuickAssist Technology Software for Linux*

Programmer’s Guide – Hardware Version v1.7 September 2020

98 Intel Confidential Document Number: 336210-014

The signature for the callback function is:
typedef void (*CpaCyInstanceNo tificationCbFunc)(

 const CpaInstanceHandle instanceHandle,

 void * pCallbackTag,

 const CpaInstanceEvent instanceEvent);

5.2.10.2.5 Parameter

typedef enum _CpaInstanceEvent

{

CPA_INSTANCE_EVENT_RESTARTING = 0,

CPA_INSTANCE_EVENT_RESTARTED,

CPA_INSTANCE_EVENT_FATAL_ERROR

} CpaInstanceEvent;

5.2.10.3 cpaDcInstanceSetNotificationCb

Cryptographic instances use this function to register for device event notifications.

5.2.10.3.1 Syntax

CpaStatus cpaDcInstanceSetNotificationCb

 const Cp aInstanceHandle instanceHandle,

 const CpaDcInstanceNotificationCbFunc

pinstanceNotificationCb, void *pCallbackTag);

5.2.10.3.2 Parameters

instanceHandle Instance handle.

pinstanceNotificationCb Instance notification callback function pointer.

pCallbackTag Opaque value provided by user.

5.2.10.3.3 Return Values

The cpaDcInstanceSetNotificationCb() function returns one of the following

codes:

5.2.10.3.4 Code Meaning

CPA_STATUS_SUCCESS The function was successful.

CPA_STATUS_FAIL Indicates a failure.

CPA_STATUS_INVALID_PARAM Invalid parameter passed in.

CPA_STATUS_UNSUPPORTED Function is not supported.

The signature for the callback function is:
typedef void (*CpaDcInstanceNotificationCbFunc)(

Supported APIs

Intel® QuickAssist Technology Software for Linux*

September 2020 Programmer’s Guide – Hardware Version v1.7

Document Number: 336210-014 Intel Confidential 99

 const CpaInstanceHandle instanceHandle,

 void * pCallbackTag,

 const CpaInstanceEvent instanceEvent);

5.2.10.3.5 Parameter

typedef enum _CpaInstanceEvent

{

CPA_INSTANCE_EVENT_RESTARTING = 0,

CPA_INSTANCE_EVENT_RESTARTED,

CPA_INSTANCE_EVENT_FATAL_ERROR

} CpaInstanceEvent;

5.2.11 Congestion Management APIs

Congestion Management or Back-pressure mechanism APIs are intended to handle the

cases when the device is busy. These APIs ensures there is enough space on the ring

before submitting a request.

Applications can query the appropriate ring on each instance and select any instance

with enough space without creating any OpData structures.

All these API definitions are located in: $ICP_ROOT/quickassist/lookaside/access_layer/

include/icp_sal_congestion_mgmt.h.

The Congestion Management APIs include:

¶ Section 5.2.11.1, icp_sal_SymGetInflightRequests

¶ Section 5.2.11.2, icp_sal_AsymGetInflightRequests

¶ Section 5.2.11.3, icp_sal_dp_SymGetInflightRequests

5.2.11.1 icp_sal_SymGetInflightRequests

This function is used to fetch in-flight and max in-flight request counts for the given

symmetric instance handle.

5.2.11.1.1 Syntax

CpaStatus icp_sal_SymGetInflightRequests(CpaInstanceH andle

instanceHandle,

Cpa32U *maxInflightRequests,

Cpa32U *numInflightRequests)

5.2.11.1.2 Parameters

instanceH andle Symmetric instance handle.

 Supported APIs

Intel® QuickAssist Technology Software for Linux*

Programmer’s Guide – Hardware Version v1.7 September 2020

100 Intel Confidential Document Number: 336210-014

*maxInflightRequests A pointer to the max in-flight request count.

*numInflightRequests A pointer to the current in-flight request count.

5.2.11.1.3 Return Value

The icp_sal_SymGetInflightRequests function returns one of the following

codes:

5.2.11.1.4 Code Meaning

CPA_STATUS_SUCCESS Successfully retrieved the request counts.

CPA_STATUS_FAIL Indicates a failure.

CPA_STATUS_INVALID_PARAM Invalid parameter.

5.2.11.2 icp_sal_AsymGetInflightRequests

This function is used to fetch in-flight and max in-flight request counts for the given

asymmetric instance handle.

5.2.11.2.1 Syntax

CpaStatus icp_sal_AsymGetInflightRequests(CpaInstanceHandle

instanceHandle,

Cpa32U *maxInflightRe quests,

Cpa32U *numInflightRequests)

5.2.11.2.2 Parameters

instanceHandle Asymmetric instance handle.

*maxInflightRequests A pointer to the max in-flight request count.

* numInflightRequests A pointer to the current in-flight request count.

5.2.11.2.3 Return Value

The icp_sal_AsymGetInflightRequests function returns one of the following

codes:

5.2.11.2.4 Code Meaning

CPA_STATUS_SUCCESS Successfully retrieved the request counts.

CPA_STATUS_FAIL Indicates a failure.

Supported APIs

Intel® QuickAssist Technology Software for Linux*

September 2020 Programmer’s Guide – Hardware Version v1.7

Document Number: 336210-014 Intel Confidential 101

CPA_STATUS_INVALID_PARAM Invalid parameter.

5.2.11.3 icp_sal_dp_SymGetInflightRequests

This data plane function is used to fetch in-flight and max in-flight request counts for

the given symmetric instance handle.

5.2.11.3.1 Syntax

CpaStatus icp_sal_ dp_SymGetInflightRequests(CpaInstanceHandle

instanceHandle,

Cpa32U *maxInflightRequests,

Cpa32U *numInflightRequests)

5.2.11.3.2 Parameters

instanceHandle Symmetric instance handle.

*maxInflightRequests A pointer to the max in-flight request count.

*numInflightRequests A pointer to the current in-flight request count.

5.2.11.3.3 Return Value

The icp_sal_dp_SymGetInflightRequests function returns one of the following

codes:

5.2.11.3.4 Code Meaning

CPA_STATUS_SUCCESS Successfully retrieved the request counts.

CPA_STATUS_FAIL Indicates a failure.

CPA_STATUS_INVALID_PARAM Invalid parameter.

5.2.12 Service Specific Polling APIs

These service specific polling APIs are intended for retrieving response messages that

are on the specific ring and dispatching the associated callback.

All these API definitions are located in: $ICP_ROOT/quickassist/lookaside/access_layer/

include/ icp_sal_poll.h.

The Polling APIs include:

¶ Section 5.2.12.1, icp_sal_CyPollSymRing

 Supported APIs

Intel® QuickAssist Technology Software for Linux*

Programmer’s Guide – Hardware Version v1.7 September 2020

102 Intel Confidential Document Number: 336210-014

¶ Section 5.2.12.2, icp_sal_CyPollAsymRing

5.2.12.1 icp_sal_ CyPollSymRing

Poll the symmetric logical instance associated with the instanceHandle to retrieve

requests that are on the response rings associated with that instance and dispatch the

associated callbacks. The response_quota input parameter is the maximum number of

responses to process in one call.

5.2.12.1.1 Syntax

CpaStatus icp_sal_CyPollSymRing(CpaInstanceHandle instanceHandle,

Cpa32U response_quota)

5.2.12.1.2 Parameters

instanceHandle Instance handle to poll for responses on the response ring.

response_quota the maximum number of messages that will be read in one

 polling. Setting the response quota to zero means that all

 messages on the ring will be read.

5.2.12.1.3 Return Value

The icp_sal_CyPollSymRing function returns one of the following codes:

5.2.12.1.4 Code Meaning

CPA_STATUS_SUCCESS Successfully polled a ring with data.

CPA_STATUS_RETRY There are no responses on the rings associated with the

instance.

CPA_STATUS_FAIL Indicates a failure.

CPA_STATUS_INVALID_PARAM Invalid parameter passed.

CPA_STATUS_RESTARTING Device restarting. Resubmit the request.

5.2.12.2 icp_sal_ CyPollAsymRing

Poll the asymmetric logical instance associated with the instanceHandle to retrieve

requests that are on the response rings associated with that instance and dispatch the

associated callbacks. The response_quota input parameter is the maximum number of

responses to process in one call.

Supported APIs

Intel® QuickAssist Technology Software for Linux*

September 2020 Programmer’s Guide – Hardware Version v1.7

Document Number: 336210-014 Intel Confidential 103

5.2.12.2.1 Syntax

CpaStatus icp_sal_CyPoll AsymRing(CpaInstanceHandle

instanceHandle,

Cpa32U response_quota)

5.2.12.2.2 Parameters

instanceHandle Instance handle.

response_quota the maximum number of messages that will be read in one

 polling. Setting the response quota to zero means that all

 messages on the ring will be read.

5.2.12.2.3 Return Value

The icp_sal_CyPollAs ymRing function returns one of the following codes:

5.2.12.2.4 Code Meaning

CPA_STATUS_SUCCESS Successfully polled a ring with data.

CPA_STATUS_RETRY There are no responses on the rings associated with

this instance.

CPA_STATUS_FAIL Indicates a failure.

CPA_STATUS_INVALID_PARAM Invalid parameter passed.

CPA_STATUS_RESTARTING Device restarting. Resubmit the request.

§

 Application Usage Guidelines

Intel® QuickAssist Technology Software for Linux*

Programmer’s Guide – Hardware Version v1.7 September 2020

104 Intel Confidential Document Number: 336210-014

6.0 Application Usage Guidelines

This chapter provides some usage guidelines and identifies some of the applications to

which the platforms described in this manual are ideally suited.

6.1 Mapping Service Instances to Engines on the Intel® QAT
Endpoint

A processor may be connected to one or more Intel® QAT Endpoints. For example, an

Intel Atom® C3000 Processor contains a single integrated Intel® QAT Endpoint, while a

single Intel® C620 Series Chipset contains up to three Intel® QAT Endpoints.

Communication between software running on the processor and the Intel® QAT

Endpoint is via hardware-assisted rings. Rings are used in pairs; software writes

requests onto a request ring and reads responses back from a response ring. The Intel®

QAT Endpoint load balances requests from all rings of a given service type across all

available hardware "engines" of the corresponding type.

A set of 16 ring banks provide the communication mechanism between a processor

and the acceleration complex. Each ring bank contains 16 individual rings for

communication.

Intel provides the software package that abstracts the communication between the

host and the rings and presents the high-level Intel® QAT APIs.

6.1.1 Processor and Intel® QAT Endpoint Communication

An acceleration service uses different rings for request and response messages.

Communication between the processor and Intel® QAT Endpoint is achieved using the

following operations:

¶ The processor uses a write (PUT) operation to place a request on the request ring.

¶ The Intel® QAT Endpoint uses a read (GET) operation to retrieve the request from the

request ring.

¶ Once the operation has been performed, the Intel® QAT Endpoint uses a write (PUT)

operation to put the response to the response ring.

¶ The processor uses a read (GET) operation to retrieve the response from the

response ring.

6.1.2 Service Instances and Interaction with the Hardware

A ring bank supports two crypto instances and two compression instances. A service

instance can be thought of as a channel between an Intel® QAT Endpoint and a core/

Application Usage Guidelines

Intel® QuickAssist Technology Software for Linux*

September 2020 Programmer’s Guide – Hardware Version v1.7

Document Number: 336210-014 Intel Confidential 105

thread running on the processor, which uses the rings for communication. The rings are

not exposed by an API but are set up using configuration files (one for each Intel® QAT

Endpoint).

In general, a service instance uses a pair of rings, one for requests and one for

responses. For cryptographic instances, separate request/response pairs are used.

6.1.3 Service Instance Configuration

The configuration of a service instance is done in the configuration file.

The following figure shows an example extract of the relevant section in the

configuration file.

Figure 7. Service Instance Configuration

User Space Instances Section

[proc0]

1

NumberCyInstances = 1

NumberDcInstances = 0

Crypto - user space instance #0 Cy0Name

= ñproc0_0ò 2

Cy0IsPolled = 1 3

Cy0CoreAffinity = 0 4

In the previous figure, the meaning of each numbered item is explained as follows:

1. Each named address domain (one domain for the kernel, any number of user space

process domains) has its own service instances.

2. Specifies a name for the instance.

3. Specifies that the instance is using polling.

4. Specifies the core affinity for the instance.

6.1.4 Cryptographic Load Balancing Using Multiple Intel® QAT Instances

The application is responsible for load balancing/spreading requests across Intel® QAT

Endpoints. Load balancing across the engines computing instances within the Intel®

QAT Endpoint is performed by hardware.

In general, the device can be fully utilized from a single instance/ring pair. The main

reasons for using multiple instances/ring pairs are:

 Application Usage Guidelines

Intel® QuickAssist Technology Software for Linux*

Programmer’s Guide – Hardware Version v1.7 September 2020

106 Intel Confidential Document Number: 336210-014

¶ Separate software processes each benefit by having their own ring pair to enable the

rings to be mapped into the address space of that process.

¶ Separate threads within a process, possibly on different cores, avoid contention.

¶ If using interrupts, they can be affinitized from different instances/ring pairs to

different cores.

6.2 Cryptography Applications

Cryptography applications supported by the platforms described in this manual

include, but are not limited to:

¶ Virtual Private Networks (VPNs, both IPsec and SSL). Both symmetric and public key

cryptography can be offloaded for bulk transfer and key exchange (IKE, SSL

handshakes and so on). Refer to Section 6.2.1, IPsec and SSL VPNs for more

information.

¶ Encrypted Storage. See Section 6.2.2, Encrypted Storage for more information.

¶ Web Proxy Appliances. See Section 6.2.3, Web Proxy Appliances.

6.2.1 IPsec and SSL VPNs

Virtual Private Networks (VPNs) allow for private networks to be established over the

public Internet by providing confidentiality, integrity and authentication using

cryptography. VPN functionality can be provided by a standalone security gateway box

at the boundary between the trusted and untrusted networks. It is also commonly

combined with other networking and security functionality in a security appliance, or

even in standard routers.

VPNs are typically based on one of two cryptographic protocols, either IPsec or

Datagram Transport Layer Security (DTLS). Each has its advantages and disadvantages.

One of the most compute-intensive aspects of a VPN is the cryptographic processing

required to encrypt/decrypt traffic for confidentiality, to perform cryptographic hash

functionality for authentication and to perform public key cryptography, based on

modular exponentiation of large numbers or elliptic curve cryptography as part of key

negotiation and exchange. The PCH provides cryptographic acceleration that can

offload this computation from the CPU, thereby freeing up CPU cycles to perform other

networking, security or other value-add applications.

The Intel® QAT Endpoint offers its acceleration services through an API, called the

Intel® QAT Cryptographic API. This can be invoked from the Linux* kernel or from Linux*

user space as well as from other operating systems. Intel also provides plugins to

enable many of the PCH's cryptographic services to be accessed through open source

cryptographic frameworks, such as the Linux* kernel crypto framework/API (also known

as the scatterlist API) and OpenSSL* libcrypto* (through its EVP API). This

Application Usage Guidelines

Intel® QuickAssist Technology Software for Linux*

September 2020 Programmer’s Guide – Hardware Version v1.7

Document Number: 336210-014 Intel Confidential 107

facilitates ease of integration with certain open source implementations of protocol

stacks, such as the Linux* kernel's native IPsec stack (called NETKEY) or with OpenVPN*

(an open source SSL VPN implementation).

6.2.2 Encrypted Storage

In recent years, cases of lost laptops containing sensitive information have made the

headlines all too frequently. Full disk encryption has become a standard procedure for

many corporate PCs. Safe-guarding critical data however is not just a necessity in the

client space, it is also a necessity in the data center.

Enterprise-class storage appliances achieve throughput rates in excess of 50 Gbps.

Several high-profile cases of data theft have triggered updates to government

regulations and industry standards. These regulations/standards now require

protection of data-at-rest for applications involving sensitive data such as medical and

financial records, typically using strong encryption. The high computational cost of

adding security to storage appliances makes offload solutions an attractive value

proposition.

Several complimentary standards for the security of data-at-rest exist, which when

combined with traditional network security protocols, such as IPsec or SSL/TLS,

provide an end-to-end secure storage solution, even for data-in-flight.

The IEEE* Security in Storage working group is developing the IEEE 1619 series of

standards that deal with cipher algorithms for disk and tape storage devices (AES in

CCM and GCM modes). The cryptographic acceleration services of platforms that use

the Intel® QAT Endpoints are ideally suited for secure long-term storage solutions

implementing the IEEE 1619.1 standard, by providing acceleration of the AES-256

cipher in CBC, CCM, and GCM modes and HMAC authentication using SHA-1, SHA-256

and SHA-512 hashes.

The Trusted Computing Group's (TCG) Storage Working Group does not prescribe a

particular set of algorithms for the disk encryption. Instead, it defines several Storage

Subsystem Classes (SSC) for various usage models, which define services such as

enrollment and connection, protected storage (an extension of Trusted Platform

Module (TPM)), locking, logging, cryptographic services, authorization, and firmware

updates. The cryptographic acceleration services of the platform can help by providing

the highest level of security for authenticating the host to trusted peripherals

implementing the TCG storage standards.

6.2.3 Web Proxy Appliances

Historically, Web Proxy appliances have evolved to present a public or intermediary

interface for clients seeking resources from other servers, providing services such as

web page caching and load balancing. These appliances are located at the edge of the

network, typically at network gateways. Due to their centralized presence in the

 Application Usage Guidelines

Intel® QuickAssist Technology Software for Linux*

Programmer’s Guide – Hardware Version v1.7 September 2020

108 Intel Confidential Document Number: 336210-014

network, Web Proxy appliances today (referred to with a number of different names,

such as Application Delivery Controllers, Reverse Proxy, and so on) have become a

collection of services that include:

¶ Application Load Balancing (L4-L7)

¶ SSL Acceleration

¶ WAN Acceleration

¶ Caching

¶ Traffic Management

¶ Web Application Firewall

SSL and WAN acceleration have become common place capabilities of the Web Proxy

appliance, requiring compute intensive algorithms for cryptography (SSL) and

compression (WAN acceleration). Intel® QAT devices on the platforms described in this

manual provide acceleration of asymmetric cryptography (RSA is the most commonly

used key negotiation algorithm in SSL), symmetric cryptography (all algorithms defined

in the TLS RFCs can be accelerated with the PCH) and compression (DEFLATE

algorithm). With the prominence of Web Proxy appliances in typical networks, this use

case has applications from cloud computing to small web server deployments.

6.3 Data Compression Applications

Data compression can be used as part of application delivery networks, data de-

duplication, as well as in a number of crypto applications, for example, VPNs, IDS/IPS

and so on.

6.3.1 Compression for Storage

In a time when the amount of online information is increasing dramatically, but budgets

for storing that information remain static, compression technology is a powerful tool

for improved information management, protection and access.

Compression appliances can transparently compress data such that clients can keep

between two- and five-times more data online and reap the benefit of other efficiencies

throughout the data lifecycle. By shrinking the primary data, all subsequent copies of

that data, such as backups, archives, snapshots, and replicas are also compressed.

Compression is the newest advancement in storage efficiency. Storage compression

appliances can shrink primary online data in real time, without performance

degradation. This can significantly lower storage capital and operating expenses by

reducing the amount of data that is stored, and the required hardware that must be

powered and cooled.

Compression can help slow the growth of storage, reducing storage costs while

simplifying both operations and management. It also enables organizations to keep

Application Usage Guidelines

Intel® QuickAssist Technology Software for Linux*

September 2020 Programmer’s Guide – Hardware Version v1.7

Document Number: 336210-014 Intel Confidential 109

more data available for use, as opposed to storing data offsite or on harder-to-access

media (such as tape).

Compression algorithms are very compute-intensive, which is one of the reasons why

the adoption of compression techniques in mainstream applications has been slow. As

an example, the DEFLATE Algorithm, which is one of the most used and popular

compression techniques today, involves several compute-intensive steps: string search

and match, sort logic, binary tree generation, Huffman Code generation. Intel® QAT

devices in the platforms described in this manual provide acceleration capabilities in

hardware that allow the CPU to offload the compute-intensive DEFLATE algorithm

operations, thereby freeing up CPU cycles for other networking, security or other

valueadd operations.

6.3.2 Data Deduplication and WAN Acceleration

Data Deduplication and WAN Acceleration are coarse-grain data compression

techniques centered around the concept of single-instance storage. Identical blocks of

data (either to be stored on disk or to be transferred across a WAN link) are only

stored/moved once, and any further occurrences are replaced by a reference to the

first instance.

While the benefits of deduplication and WAN acceleration obviously depend on the

type of data, multi-user collaborative environments are the most suitable due to the

amount of naturally occurring replication caused by forwarded emails and multiple

(similar) versions of documents in various stages of development.

Deduplication strategies can vary in terms of inline vs post-processing, block size

granularity (file-level only, fixed block size or variable block-size chunking), duplicate

identification (cryptographic hash only, simple CRC followed by byte-level comparison

or hybrids) and duplicate look-up (for example, Bloom filter based index).

Cryptographic hashes are the most suitable techniques for reliably identifying matching

blocks with an improbably low risk for false positives, but they also represent the most

compute-intensive workload in the application. As such, the cryptographic acceleration

services offered by the hardware through the Intel® QAT Cryptographic API can be used

to considerably improve the throughput of deduplication/WAN acceleration

applications. Additionally, the compression/decompression acceleration services can

be used to further compress blocks for storage on disk, while optionally encrypting the

compressed contents for data security.

§

